TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141964 times)
  2. FAT32 Library (75151 times)
  3. Network Ethernet Library (59420 times)
  4. USB Device Library (49414 times)
  5. Network WiFi Library (45228 times)
  6. FT800 Library (44816 times)
  7. GSM click (31380 times)
  8. mikroSDK (30368 times)
  9. microSD click (27741 times)
  10. PID Library (27595 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 433 times

Not followed.

License: MIT license  

Brushless 14 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TB67B001FTG, a three-phase, brushless, Hall sensorless driver IC from Toshiba Semiconductor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 14 Click" changes.

Do you want to report abuse regarding "Brushless 14 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 14 Click

Brushless 14 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TB67B001FTG, a three-phase, brushless, Hall sensorless driver IC from Toshiba Semiconductor.

brushless_14_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jul 2021.
  • Type : I2C type

Software Support

We provide a library for the Brushless14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless14 Click driver.

Standard key functions :

  • brushless14_cfg_setup Config Object Initialization function.

    void brushless14_cfg_setup ( brushless14_cfg_t *cfg );
  • brushless14_init Initialization function.

    err_t brushless14_init ( brushless14_t *ctx, brushless14_cfg_t *cfg );
  • brushless14_default_cfg Click Default Configuration function.

    err_t brushless14_default_cfg ( brushless14_t *ctx );

Example key functions :

  • brushless14_set_duty_cycle Sets PWM duty cycle.

    err_t brushless14_set_duty_cycle ( brushless14_t *ctx, float duty_cycle );
  • brushless14_set_la Set lead angle setting input.

    err_t brushless14_set_la ( brushless14_t *ctx, uint16_t m_voltage );
  • brushless14_set_dir Set dirrection pin state.

    void brushless14_set_dir ( brushless14_t *ctx, uint8_t state );

Example Description

This application example showcases ability of the device to control motor, It's speed and rotation direction. Also it gives user ability to change other configuration parameters.

The demo application is composed of two sections :

Application Init

Initialization of communication modules (I2C, PWM, UART) and additional pins (INT, DIR). It reads ID from DAC ic to confirm communcation. Then configures device for control.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless14_cfg_t brushless14_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless14_cfg_setup( &brushless14_cfg );
    BRUSHLESS14_MAP_MIKROBUS( brushless14_cfg, MIKROBUS_1 );
    err_t init_flag = brushless14_init( &brushless14, &brushless14_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    uint16_t data_read = 0;
    brushless14_dac_read( &brushless14, 0x02, &data_read);
    if ( BRUSHLESS14_DAC_ID != data_read )
    {
        log_error( &logger, " Communication. " );
    }

    brushless14_default_cfg ( &brushless14 );

    Delay_ms ( 1000 );
    log_info( &logger, " Application Task " );
}

Application Task

Drives motor using PWM from 10% duty cycle to 100% and back to 0%. Increment is done by 10% in span of 2 seconds. Whenever application gets to 0% duty cycle it chages direction of rotation.


void application_task ( void ) 
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    static uint8_t direction = 0;
    float duty = duty_cnt / 10.0;

    brushless14_set_duty_cycle ( &brushless14, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
        direction = !direction;
        brushless14_set_dir( &brushless14, direction );
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

STSPIN220 click

5

STSPIN220 click is a stepper motor driver with the PWM current control and selectable microstepping up to 256 microsteps. It is based on the STSPIN220, a low voltage stepper motor driver from STSPIN2 series.

[Learn More]

Thermo 24 Click

0

Thermo 24 Click is a compact add-on board that contains the 4th generation temperature sensing solution from Sensirion. This board features the STS40, a high-accuracy ultra-low-power temperature sensor. The STS40 integrates a digital temperature sensor with a 16-bit analog-to-digital converter (ADC), a data processing circuit, and serial interface logic functions in one package. Characterized by its high accuracy (up to ±0.2°C typical) and high resolution of 0.01°C, this temperature sensor provides temperature data to the host controller with a configurable I2C interface.

[Learn More]

DIGI IO Click

0

DIGI I/O Click is a compact add-on board for flexible industrial digital input and output control. This board features the MAX14906, a quad-channel industrial digital input/output IC from Analog Devices, compliant with IEC 61131-2 standard. Each channel can be individually configured as a high-side switch, push-pull driver, or digital input, supporting various operating modes with current limiting up to 1.2A and fast signal transmission. The board supports 24V operation by default, with options for individual channel power configuration, and includes built-in diagnostics like overvoltage and undervoltage detection, thermal overload, and wire-break detection. DIGI I/O Click is ideal for industrial automation, motor control systems, PLCs, and Distributed Control Systems (DCS).

[Learn More]