We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.14
mikroSDK Library: 2.0.0.0
Category: Optical
Downloaded: 180 times
Not followed.
License: MIT license
IrDA 3 Click is an intelligent IR transceiver device that can both send and receive UART commands via the IR interface. IrDA 3 Click features both the IR transceiver and the encoder/decoder IC, used to convert the UART data and send or receive it in IrDA® compatible format. IrDA 3 Click also has an onboard clock generator for the fastest possible UART performance of 115,200 bps, so it does not need an additional clock signal to be generated by the MCU.
Do you want to subscribe in order to receive notifications regarding "IrDA 3 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "IrDA 3 Click" changes.
Do you want to report abuse regarding "IrDA 3 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4627_irda_3_click.zip [486.35KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for dsPIC XC16 |
|
IrDA 3 Click is an intelligent IR transceiver device that can both send and receive UART commands via the IR interface. IrDA 3 Click features both the IR transceiver and the encoder/decoder IC, used to convert the UART data and send or receive it in IrDA® compatible format. IrDA 3 Click also has an onboard clock generator for the fastest possible UART performance of 115,200 bps, so it does not need an additional clock signal to be generated by the MCU.
We provide a library for the IrDA3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for IrDA3 Click driver.
irda3_cfg_setup
Config Object Initialization function.
void irda3_cfg_setup ( irda3_cfg_t *cfg );
irda3_init
Initialization function.
err_t irda3_init ( irda3_t *ctx, irda3_cfg_t *cfg );
irda3_default_cfg
Click Default Configuration function.
void irda3_default_cfg ( irda3_t *ctx );
irda3_mode_setup
This function allows IrDA 3 Click mode to be set.
void irda3_mode_setup( irda3_t *ctx, irda3_mode_t state );
irda3_pwr_setup
This function allows IrDA 3 Click power mode to be set.
void irda3_pwr_setup( irda3_t *ctx, irda3_pwr_t state );
irda3_reset
This function executes a device reset operation.
void irda3_reset( irda3_t *ctx );
This example demonstrates the use of IrDA 3 Click boards. The example can perform both roles, transmitter and receiver.
The demo application is composed of two sections :
Initializes UART driver and all used control pins. Also clears the response buffer.
void application_init( void ) { irda3_cfg_t irda3_cfg; log_cfg_t logger_cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( logger_cfg );
log_init( &logger, &logger_cfg );
log_printf( &logger, "*** IrDA initialization done ***\r\n" );
log_printf( &logger, "**********************************\r\n" );
// Click initialization.
irda3_cfg_setup( &irda3_cfg );
IRDA3_MAP_MIKROBUS( irda3_cfg, MIKROBUS_1 );
irda3_init( &irda3, &irda3_cfg );
irda3_default_cfg( &irda3 );
irda3_reset( &irda3 );
// Clear response.
memset( rx_message, 0, sizeof( rx_message ) );
}
### Application Task
> Demonstrates the use of IrDA 3 clicks which can be used as transmitter or receiver. There are four different examples in this project.
Uncomment one of the below macros to select which example will be executed. By default the DEMO_APP_TRANSMITTER_1 example is selected.
```c
void application_task( void ) {
#ifdef DEMO_APP_RECEIVER_1
rx_message[ 0 ] = irda3_generic_single_receive( &irda3 );
if ( rx_message[ 0 ] != 0 ) {
log_printf( &logger, "%c", ( char ) rx_message[ 0 ] );
}
Delay_ms ( 100 );
#endif
#ifdef DEMO_APP_RECEIVER_2
irda3_generic_multiple_receive( &irda3, rx_message, '\n' );
log_printf( &logger, "RECEIVED MESSAGE : " );
log_printf( &logger, "%s\r\n", rx_message );
Delay_ms ( 100 );
#endif
#ifdef DEMO_APP_TRANSMITTER_1
irda3_generic_multiple_send( &irda3, tx_message );
log_printf( &logger, "MESSAGE SENT\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#endif
#ifdef DEMO_APP_TRANSMITTER_2
idx = 0;
while ( tx_message[ idx ] != '\0' ) {
irda3_generic_single_send( &irda3, tx_message[ idx++ ] );
}
log_printf( &logger, "MESSAGE SENT\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#endif
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.