TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140769 times)
  2. FAT32 Library (73357 times)
  3. Network Ethernet Library (58200 times)
  4. USB Device Library (48385 times)
  5. Network WiFi Library (43977 times)
  6. FT800 Library (43538 times)
  7. GSM click (30467 times)
  8. mikroSDK (29170 times)
  9. PID Library (27169 times)
  10. microSD click (26848 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BarGraph 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 262 times

Not followed.

License: MIT license  

BarGraph 4 Click is a compact add-on board that contains four green four-segment LED bar graph displays. This board features the TLC59283, a 16-channel, constant-current sink light-emitting diode (LED) driver from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BarGraph 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BarGraph 4 Click" changes.

Do you want to report abuse regarding "BarGraph 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


BarGraph 4 Click

BarGraph 4 Click is a compact add-on board that contains four green four-segment LED bar graph displays. This board features the TLC59283, a 16-channel, constant-current sink light-emitting diode (LED) driver from Texas Instruments.

bargraph_4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2021.
  • Type : SPI type

Software Support

We provide a library for the BarGraph4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for BarGraph4 Click driver.

Standard key functions :

  • bargraph4_cfg_setup Config Object Initialization function.

    void bargraph4_cfg_setup ( bargraph4_cfg_t *cfg );
  • bargraph4_init Initialization function.

    err_t bargraph4_init ( bargraph4_t *ctx, bargraph4_cfg_t *cfg );

Example key functions :

  • bargraph4_enable_output This function enables all outputs.

    void bargraph4_enable_output ( bargraph4_t *ctx );
  • bargraph4_set_output This function sets all outputs to desired value by using SPI serial interface.

    err_t bargraph4_set_output ( bargraph4_t *ctx, uint16_t ch_mask );
  • bargraph4_set_channel_level This function sets the level of a desired bar graph channel.

    err_t bargraph4_set_channel_level ( bargraph4_t *ctx, bargraph4_sel_ch_t channel, bargraph4_level_t level );

Example Description

This example demonstrates the use of BarGraph 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables output.


void application_init ( void )
{
    log_cfg_t log_cfg;              /**< Logger config object. */
    bargraph4_cfg_t bargraph4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.

    bargraph4_cfg_setup( &bargraph4_cfg );
    BARGRAPH4_MAP_MIKROBUS( bargraph4_cfg, MIKROBUS_1 );
    err_t init_flag  = bargraph4_init( &bargraph4, &bargraph4_cfg );
    if ( SPI_MASTER_ERROR == init_flag )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    bargraph4_enable_output( &bargraph4 );
    log_info( &logger, " Application Task " );
}

Application Task

Changes the level of all bar graph channels every second. The channels level will be logged on the USB UART.


void application_task ( void )
{
    for ( bargraph4_level_t cnt = BARGRAPH4_LEVEL_0; cnt <= BARGRAPH4_LEVEL_4; cnt++ )
    {
        bargraph4_set_channel_level( &bargraph4, BARGRAPH4_CHANNEL_A, cnt );
        bargraph4_set_channel_level( &bargraph4, BARGRAPH4_CHANNEL_B, cnt );
        bargraph4_set_channel_level( &bargraph4, BARGRAPH4_CHANNEL_C, cnt );
        bargraph4_set_channel_level( &bargraph4, BARGRAPH4_CHANNEL_D, cnt );
        log_printf( &logger, " All channels set to level %u\r\n\n", ( uint16_t ) cnt );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BarGraph4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

TDC Click

0

TDC Click is a compact add-on board that recognizes events and provides a digital representation of the time they occurred. This board features the TDC7200, a time-to-digital converter from Texas Instruments. The Time to Digital Converter (TDC) performs the function of a stopwatch and measures the elapsed time (time-of-flight or TOF) between a START pulse and up to five STOP pulses. The ability to measure from START to multiple STOPs gives users the flexibility to select which STOP pulse yields the best echo performance.

[Learn More]

BATT-MAN 3 Click

0

BATT-MAN 3 Click is a compact add-on board representing an advanced battery management solution. This board features the ADP5350, a power management IC with inductive boost LED, and three LDO regulators from Analog Devices. This I2C programmable board supports USB optimized for USB voltage input. It combines one high-performance buck regulator for single Li-Ion/Li-Ion polymer battery charging, a fuel gauge, a highly programmable boost regulator for LED backlight illumination, and three 150mA LDO regulators.

[Learn More]

SwipeSwitch click

5

SwipeSwitch click is capacitive touch, gesture, and proximity sensing Click board, which is equipped with the IQS266, an integrated trackpad controller circuit which features ProxSense® and IQ Switch® technologies.

[Learn More]