TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141685 times)
  2. FAT32 Library (74750 times)
  3. Network Ethernet Library (59207 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44995 times)
  6. FT800 Library (44520 times)
  7. GSM click (31196 times)
  8. mikroSDK (30095 times)
  9. microSD click (27579 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Load Cell 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 383 times

Not followed.

License: MIT license  

Load Cell 4 Click is a compact add-on board that contains a resistive sensor signal conditioner with a fast power-up data output response. This board features the ZSC31014, a CMOS integrated circuit for highly accurate amplification and analog-to-digital conversion of differential and half-bridge input signals from Renesas.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Load Cell 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Load Cell 4 Click" changes.

Do you want to report abuse regarding "Load Cell 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Load Cell 4 Click

Load Cell 4 Click is a compact add-on board that contains a resistive sensor signal conditioner with a fast power-up data output response. This board features the ZSC31014, a CMOS integrated circuit for highly accurate amplification and analog-to-digital conversion of differential and half-bridge input signals from Renesas.

loadcell4_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jul 2021.
  • Type : I2C type

Software Support

We provide a library for the LoadCell4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LoadCell4 Click driver.

Standard key functions :

  • loadcell4_cfg_setup Config Object Initialization function.

    void loadcell4_cfg_setup ( loadcell4_cfg_t *cfg );
  • loadcell4_init Initialization function.

    err_t loadcell4_init ( loadcell4_t *ctx, loadcell4_cfg_t *cfg );
  • loadcell4_default_cfg Click Default Configuration function.

    err_t loadcell4_default_cfg ( loadcell4_t *ctx );

Example key functions :

  • loadcell4_power_dev Enable power function.

    void loadcell4_power_dev ( loadcell4_t *ctx, uint8_t power_state );
  • loadcell4_tare Tare the scales function.

    void loadcell4_tare ( loadcell4_t *ctx, loadcell4_data_t *cell_data );
  • loadcell4_get_weight Get weight function.

    float loadcell4_get_weight ( loadcell4_t *ctx, loadcell4_data_t *cell_data );

Example Description

This is an example that demonstrates the use of the Load Cell 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes I2C driver and performs the power on. Sets tare the scale, calibrate scale and start measurements.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    loadcell4_cfg_t loadcell4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    loadcell4_cfg_setup( &loadcell4_cfg );
    LOADCELL4_MAP_MIKROBUS( loadcell4_cfg, MIKROBUS_1 );
    err_t init_flag = loadcell4_init( &loadcell4, &loadcell4_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    loadcell4_default_cfg ( &loadcell4 );

    loadcell4_power_dev( &loadcell4, LOADCELL4_PWR_ON );
    Delay_ms ( 500 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "     ~~~  STEP 1  ~~~    \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "     Tare the scale :    \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " >> Remove all object << \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " In the following 10 sec \r\n" );
    log_printf( &logger, " please remove all object\r\n" );
    log_printf( &logger, "     from the scale.     \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Start tare scales    \r\n" );
    loadcell4_tare( &loadcell4, &cell_data );
    Delay_ms ( 500 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "   Tarring is complete   \r\n" );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "     ~~~  STEP 2  ~~~    \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Calibrate Scale :    \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, "   >>> Load etalon <<<   \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " In the following 10 sec \r\n" );
    log_printf( &logger, "place 100 g weight etalon\r\n" );
    log_printf( &logger, "    on the scale for     \r\n" );
    log_printf( &logger, "   calibration purpose.  \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Start calibration    \r\n" );

    if ( loadcell4_calibration( &loadcell4, LOADCELL4_WEIGHT_100G, &cell_data ) == LOADCELL4_OK ) {
        log_printf( &logger, "-------------------------\r\n" );
        log_printf( &logger, "    Calibration  Done    \r\n" );
        log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
        log_printf( &logger, "  >>> Remove etalon <<<  \r\n" );
        log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
        log_printf( &logger, " In the following 10 sec \r\n" );
        log_printf( &logger, "   remove 100 g weight   \r\n" );
        log_printf( &logger, "   etalon on the scale.  \r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    } else {
        log_printf( &logger, "-------------------------\r\n" );
        log_printf( &logger, "   Calibration  Error   \r\n" );
        for ( ; ; );
    }

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "   Start measurements :  \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
}

Application Task

The Load Cell 4 Click board can be used to measure weight, shows the measurement of scales in grams [ g ]. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 4 sec.


void application_task ( void ) {
    weight_val = loadcell4_get_weight( &loadcell4, &cell_data );
    log_printf( &logger, "     Weight : %.2f g \r\n", weight_val );
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Matrix R click

2

Matrix R click is a mikroBUS add-on board with two 5x7 matrices driven by two MAX7219 8-bit LED Display Drivers.

[Learn More]

IR Gesture 3 Click

0

IR Gesture 3 Click is a compact add-on board that provides contactless gesture recognition. This board features the ADPD1080, a photometric front-end from Analog Devices. The IR Gesture 3 Click allows gesture recognition in two dimensions, with a built-in optical filter and a sharp visible light cutoff. It eliminates the need for external lenses and preserves the dynamic range of the sensor when placed under sunlight or indoor lighting. It does not require a precise alignment because its sensor maintains a linear response within the ±35° angular field of view.

[Learn More]

Piezo Accel 2 50g Click

0

Piezo Accel 2 Click - 50g is a compact add-on board for precise vibration and motion monitoring in condition-based maintenance applications. This board features the 830M1-0050, a triaxial piezoelectric accelerometer from TE Connectivity, capable of detecting motion and acceleration along all three axes (X, Y, Z). The 830M1-0050 offers a ±50g range with a sensitivity of 25mV/g, providing reliable and accurate analog voltage outputs. It integrates a built-in RTD temperature sensor for simultaneous vibration and temperature monitoring, and the onboard MCP3562R 24-bit ADC converts these signals into high-resolution digital data. Communication is made through an SPI interface with additional interrupt and clock functionality for easy integration with a host MCU.

[Learn More]