TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141569 times)
  2. FAT32 Library (74513 times)
  3. Network Ethernet Library (59053 times)
  4. USB Device Library (49044 times)
  5. Network WiFi Library (44811 times)
  6. FT800 Library (44376 times)
  7. GSM click (31066 times)
  8. mikroSDK (29922 times)
  9. microSD click (27486 times)
  10. PID Library (27484 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 384 times

Not followed.

License: MIT license  

EEPROM 7 Click is a compact add-on board that contains the highest-density memory solution. This board feature the 25CSM04, a 4-Mbit SPI Serial EEPROM with a 128-bit serial number and enhanced write protection mode from Microchip. Internally organized as 2,048 pages of 256 bytes each, the 25CSM04 comes up with the compatible SPI serial interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 7 Click" changes.

Do you want to report abuse regarding "EEPROM 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


EEPROM 7 Click

EEPROM 7 Click is a compact add-on board that contains the highest-density memory solution. This board feature the 25CSM04, a 4-Mbit SPI Serial EEPROM with a 128-bit serial number and enhanced write protection mode from Microchip. Internally organized as 2,048 pages of 256 bytes each, the 25CSM04 comes up with the compatible SPI serial interface.

eeprom7_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jul 2021.
  • Type : SPI type

Software Support

We provide a library for the EEPROM7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM7 Click driver.

Standard key functions :

  • eeprom7_cfg_setup Config Object Initialization function.

    void eeprom7_cfg_setup ( eeprom7_cfg_t *cfg );
  • eeprom7_init Initialization function.

    err_t eeprom7_init ( eeprom7_t *ctx, eeprom7_cfg_t *cfg );
  • eeprom7_default_cfg Click Default Configuration function.

    err_t eeprom7_default_cfg ( eeprom7_t *ctx );

Example key functions :

  • eeprom7_sw_reset Software device reset function.

    void eeprom7_sw_reset ( eeprom7_t *ctx );
  • eeprom7_write_memory Write EEPROM memory function.

    void eeprom7_write_memory ( eeprom7_t *ctx, uint32_t addr, uint8_t *p_tx_data, uint8_t n_bytes );
  • eeprom7_read_memory Read EEPROM memory function.

    void eeprom7_read_memory ( eeprom7_t *ctx, uint32_t addr, uint8_t *p_rx_data, uint8_t n_bytes);

Example Description

This is an example that demonstrates the use of the EEPROM 7 Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables - SPI, also write log.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    eeprom7_cfg_t eeprom7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    eeprom7_cfg_setup( &eeprom7_cfg );
    EEPROM7_MAP_MIKROBUS( eeprom7_cfg, MIKROBUS_1 );
    err_t init_flag  = eeprom7_init( &eeprom7, &eeprom7_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    eeprom7_default_cfg ( &eeprom7 );
    log_info( &logger, " Application Task " );
}

Application Task

In this example, we write and then read data from EEPROM memory. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes approximately for every 3 sec.


void application_task ( void ) {
    eeprom7_send_cmd( &eeprom7, EEPROM7_OPCODE_STATUS_WREN );
    Delay_ms ( 100 );

    eeprom7_write_memory( &eeprom7, 0x00001234, &demo_data[ 0 ], 9 );
    Delay_ms ( 100 );

    log_printf( &logger, " > Write data: %s", demo_data );

    while ( eeprom7_is_device_ready( &eeprom7 ) == EEPROM7_DEVICE_IS_READY ) {
        check_status = eeprom7_send_cmd( &eeprom7, EEPROM7_OPCODE_STATUS_WRBP );
        Delay_ms ( 1 );
    }

    eeprom7_read_memory( &eeprom7, 0x00001234, &read_data[ 0 ], 9 );
    Delay_ms ( 100 );
    log_printf( &logger, " > Read data: %s", read_data );

    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Hydrogen Click

0

Hydrogen Click carries an MQ-8 sensor for hydrogen (H2). The gas sensing layer on the sensor unit is made of tin dioxide (SnO2), which has lower conductivity in clean air.

[Learn More]

Buck 22 Click

0

Buck 22 Click is a compact add-on board that steps down the voltage from its input (supply) to its output (load). This board features the TPS62869, a high-frequency synchronous step-down converter with an I2C interface from Texas Instruments, providing an efficient, adaptive, and high power-density solution. The TPS62869 operates in PWM mode at medium to heavy loads (also for the slightest output voltage ripple), and it automatically enters Power-Save Mode operation at light load to maintain high efficiency over the entire output load current range. With its DCS-Control™ architecture, excellent load transient performance and tight output voltage accuracy are achieved alongside adjustable output voltage range from 0.8V to 3.35V with a 10mV step size.

[Learn More]

Thermo 19 Click

0

Thermo 19 Click is a compact add-on board that provides an accurate temperature measurement. This board features the MAX31825, a temperature sensor that provides 8-bit to 12-bit Celsius temperature measurements with better than ±1.75°C from -45°C to +145°C from Analog Devices. It has a unique 64-bit serial code stored in an on-chip ROM, an alarm output for detection of temperature faults, temperature resolution selection from 8 to 12 bits, and it allows temperature conversion to 10-bit digital word in a period of 80ms (max).

[Learn More]