TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140767 times)
  2. FAT32 Library (73352 times)
  3. Network Ethernet Library (58197 times)
  4. USB Device Library (48381 times)
  5. Network WiFi Library (43975 times)
  6. FT800 Library (43537 times)
  7. GSM click (30466 times)
  8. mikroSDK (29170 times)
  9. PID Library (27166 times)
  10. microSD click (26847 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 15 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 261 times

Not followed.

License: MIT license  

Proximity 15 Click is a compact add-on board that contains a close-range proximity sensing solution. This board features the VL53L1, a state-of-the-art, Time-of-Flight (ToF), a laser-ranging miniature sensor from STMicroelectronics.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 15 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 15 Click" changes.

Do you want to report abuse regarding "Proximity 15 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Proximity 15 Click

Proximity 15 Click is a compact add-on board that contains a close-range proximity sensing solution. This board features the VL53L1, a state-of-the-art, Time-of-Flight (ToF), a laser-ranging miniature sensor from STMicroelectronics.

proximity15_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2021.
  • Type : I2C type

Software Support

We provide a library for the Proximity15 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Proximity15 Click driver.

Standard key functions :

  • proximity15_cfg_setup Config Object Initialization function.

    void proximity15_cfg_setup ( proximity15_cfg_t *cfg );
  • proximity15_init Initialization function.

    err_t proximity15_init ( proximity15_t *ctx, proximity15_cfg_t *cfg );
  • proximity15_default_cfg Click Default Configuration function.

    err_t proximity15_default_cfg ( proximity15_t *ctx );

Example key functions :

  • proximity15_get_distance This function waits for the data ready, then reads the distance measured by the sensor in milimeters and clears interrupts.

    err_t proximity15_get_distance ( proximity15_t *ctx, uint16_t *distance );
  • proximity15_set_inter_measurement_period This function programs the inter measurement period in miliseconds.

    err_t proximity15_set_inter_measurement_period ( proximity15_t *ctx, uint16_t time_ms );
  • proximity15_set_timing_budget This function programs the timing budget in miliseconds.

    err_t proximity15_set_timing_budget ( proximity15_t *ctx, proximity15_timing_budget_t time );

Example Description

This example demonstrates the use of Proximity 15 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which enables the sensor and sets it to long distance mode with 50ms timing budget and 100ms inter measurement periods.


void application_init ( void )
{
    log_cfg_t log_cfg;                  /**< Logger config object. */
    proximity15_cfg_t proximity15_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    proximity15_cfg_setup( &proximity15_cfg );
    PROXIMITY15_MAP_MIKROBUS( proximity15_cfg, MIKROBUS_1 );
    err_t init_flag = proximity15_init( &proximity15, &proximity15_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    init_flag = proximity15_default_cfg ( &proximity15 );
    if ( PROXIMITY15_ERROR == init_flag ) 
    {
        log_error( &logger, " Default Config Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the distance measured by the sensor in milimeters and displays the value on the USB UART approximately every 100ms.


void application_task ( void )
{
    uint16_t distance = 0;

    if ( PROXIMITY15_OK == proximity15_get_distance ( &proximity15, &distance ) )
    {
        log_printf( &logger, " Distance(mm): %u\r\n\n", distance );
    }
}

Note

In order to measure longer distance, increase the timing budget and inter measurement periods.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity15

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

AudioAmp 4 Click

0

AudioAmp 4 Click is a low-power audio amplifier with a digital volume control. It is equipped with the LM4860, an audio amplifier IC capable of delivering up to 1W of continuous power to an 8 Ω load.

[Learn More]

ADC 11 Click

0

ADC 11 Click is a compact add-on board that contains a high-performance data converter. This board features the LTC1864, a 16-bit 250ksps analog-to-digital converter from Analog Devices. With a typical supply current of only 850µA at the maximum sampling frequency, the LTC1864 is among the lowest power consumption ADCs available. After conversion, the LTC1864 goes into a low-power Sleep mode, further reducing the supply current. That’s why it can run at proper micro-power levels in applications that do not require the maximum sampling rate of the LTC1864. This Click board™ is suitable for high-speed data acquisition, low power battery-operated instrumentation, isolated and remote data acquisition, and many other applications.

[Learn More]

Multi Stepper TB67S261 Click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S261FTG, a PHASE-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 1.4A in addition to several built-in error detection circuits.

[Learn More]