TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139842 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ISM RX 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Sub-1 GHz Transceivers

Downloaded: 188 times

Not followed.

License: MIT license  

ISM RX 3 Click is a compact add-on board that contains a Sub-GHz RF receiver. This board features the MAX41470, a high-performance, low-power receiver ideal for amplitude shift-keyed (ASK) and frequency shift-keyed (FSK) data from Maxim Integrated, now part of Analog Devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ISM RX 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ISM RX 3 Click" changes.

Do you want to report abuse regarding "ISM RX 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


ISM RX 3 Click

ISM RX 3 Click is a compact add-on board that contains a Sub-GHz RF receiver. This board features the MAX41470, a high-performance, low-power receiver ideal for amplitude shift-keyed (ASK) and frequency shift-keyed (FSK) data from Maxim Integrated, now part of Analog Devices.

ismrx3_click.png

Click Product page


Click library

  • Author : Luka FIlipovic
  • Date : Feb 2021.
  • Type : SPI type

Software Support

We provide a library for the ISMRX3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for ISMRX3 Click driver.

Standard key functions :

  • ismrx3_cfg_setup Config Object Initialization function.

    void ismrx3_cfg_setup ( ismrx3_cfg_t *cfg );
  • ismrx3_init Initialization function.

    err_t ismrx3_init ( ismrx3_t *ctx, ismrx3_cfg_t *cfg );
  • ismrx3_default_cfg Click Default Configuration function.

    err_t ismrx3_default_cfg ( ismrx3_t *ctx );

Example key functions :

  • ismrx3_reset Reset function.

    void ismrx3_reset( ismrx3_t *ctx );
  • ismrx3_get_data Read data output.

    uint8_t ismrx3_get_data( ismrx3_t *ctx );
  • ismrx3_get_clk Read clock output.

    uint8_t ismrx3_get_clk( ismrx3_t *ctx );

Example Description

This example showcases ability of Click board to configure and read incoming rf signal and parses data using data and clock line.

The demo application is composed of two sections :

Application Init

Initialization of communication modules (SPI, UART), and additional communication pins. Resets device, reads device ID, and sets default configuration that sets ASK modulation and 433.92MHz with 5bps data rate.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ismrx3_cfg_t ismrx3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ismrx3_cfg_setup( &ismrx3_cfg );
    ISMRX3_MAP_MIKROBUS( ismrx3_cfg, MIKROBUS_1 );
    err_t init_flag  = ismrx3_init( &ismrx3, &ismrx3_cfg );
    if ( init_flag == SPI_MASTER_ERROR )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    ismrx3_reset( &ismrx3 );

    uint8_t read_data;
    ismrx3_generic_read( &ismrx3, 0x1E, &read_data );
    log_info( &logger, " > ID: 0x%.2X", ( uint16_t )read_data );
    Delay_ms ( 500 );

    ismrx3.modulation = ISMRX3_MODULATION_ASK;
    ismrx3.reference_freq = ISMRX3_FREQUENCY_MHZ_433p92;
    ismrx3.data_rate = ISMRX3_DATA_RATE_KBPS_5;
    ismrx3.freq_deviation = ISMRX3_DEVIATION_KHZ_40;

    if ( ISMRX3_ERROR == ismrx3_default_cfg ( &ismrx3 ) )
    {
        log_error( &logger, " Configuration Error. " );
        log_info( &logger, " Please, change device configuration parameters and run program again... " );

        for ( ; ; );
    }

    manchester_counter = 0;
    log_info( &logger, " Application Task " );
}

Application Task

Reads clock pin and gets samples of data pin state, converts it in manchester data that stores in buffer. When it fills out manchester buffer checks if expected preamble data is received. If it is checks the next byte(it should be received data length). Then parses rest of data and if it's correct shows it on log.


void application_task ( void )
{    
    if ( ismrx3_get_clk( &ismrx3 ) )
    {
        sample = ismrx3_get_data( &ismrx3 );
        if ( last_sample == sample )
        {
            consecutive++; 
        }
        else
        {
            if ( consecutive < 4 )//Single sample
            {
                manchester_buf[ manchester_counter++ ] = last_sample + 48;//Convert to ascii 1/0
            }
            else if ( consecutive < 6 )//Two samples
            {
                manchester_buf[ manchester_counter++ ] = last_sample + 48;//Convert to ascii 1/0
                manchester_buf[ manchester_counter++ ] = last_sample + 48;//Convert to ascii 1/0
            }
            consecutive = 1;
            last_sample = sample;
        }

        while ( ismrx3_get_clk( &ismrx3 ) );
    }

    if ( manchester_counter >= MANCHESTER_BUF_LEN - 1 )
    {
        parse_samples(  ); 
        manchester_counter = 0;
    }
}

Note

  • The expected data that is received is:

    _PREAMBLEWORD(2bytes), _DATALENGTH(1byte), DATA(1..255bytes)

  • By default _PREAMBLEWORD is set to be 0xAAAA.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ISMRX3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Spectral 3 click

5

Spectral 3 click is a multispectral sensing device, which uses the state-of-the-art sensor IC for a very accurate near-IR (NIR) sensing. The sensor on the Spectral 3 click provides multi-spectral sensing in the NIR wavelengths from approximately 610nm to 860nm with the full width at half maximum (FWHM) of 20nm.

[Learn More]

Magneto 6 Click

0

Magneto 6 Click features low power three dimensional Hall effect sensor, TLI493D-A2B6, designed for magnetic sensing applications. It measures the magnetic field in X, Y, and Z direction. Each X, Y and Z Hall probe is connected sequentially to a multiplexer, which is then connected to an Analog to Digital Converter (ADC). Optional, the temperature can be determined as well after the three Hall channels. The data measurement is provided in digital format to the microcontroller over the standard I2C interface. Some of the benefits of this Click board™ are wide application range addressable due to high flexibility and component reduction due to the 3D magnetic measurement principle.

[Learn More]

SPI Isolator Click

0

The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

[Learn More]