TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141229 times)
  2. FAT32 Library (74037 times)
  3. Network Ethernet Library (58659 times)
  4. USB Device Library (48767 times)
  5. Network WiFi Library (44487 times)
  6. FT800 Library (44034 times)
  7. GSM click (30784 times)
  8. mikroSDK (29603 times)
  9. PID Library (27342 times)
  10. microSD click (27189 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Vibro Motor 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 268 times

Not followed.

License: MIT license  

Vibro Motor 4 Click is a compact add-on board that makes an ideal solution for adding simple haptic feedback in any design. This board features the G1040003D, a coin-sized linear resonant actuator (LRA) that generates vibration/haptic feedback from Jinlong Machinery & Electronics, Inc. Driven by a flexible Haptic/Vibra driver, the DRV2605, G1040003D vibrates in the Z-axis, which is perpendicular to the face of the vibration motor. It draws a maximum of 170mA while producing the highest G force/vibration energy of 2 GRMS. This Click board™ makes an excellent choice for devices with limited battery capacity and for users who require crisp haptic feedback and low power consumption.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Vibro Motor 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Vibro Motor 4 Click" changes.

Do you want to report abuse regarding "Vibro Motor 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Vibro Motor 4 Click

Vibro Motor 4 Click is a compact add-on board that makes an ideal solution for adding simple haptic feedback in any design. This board features the G1040003D, a coin-sized linear resonant actuator (LRA) that generates vibration/haptic feedback from Jinlong Machinery & Electronics, Inc. Driven by a flexible Haptic/Vibra driver, the DRV2605, G1040003D vibrates in the Z-axis, which is perpendicular to the face of the vibration motor. It draws a maximum of 170mA while producing the highest G force/vibration energy of 2 GRMS.

vibromotor4_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Aug 2021.
  • Type : I2C type

Software Support

We provide a library for the VibroMotor4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for VibroMotor4 Click driver.

Standard key functions :

  • vibromotor4_cfg_setup Config Object Initialization function.

    void vibromotor4_cfg_setup ( vibromotor4_cfg_t *cfg );
  • vibromotor4_init Initialization function.

    err_t vibromotor4_init ( vibromotor4_t *ctx, vibromotor4_cfg_t *cfg );
  • vibromotor4_default_cfg Click Default Configuration function.

    err_t vibromotor4_default_cfg ( vibromotor4_t *ctx );

Example key functions :

  • vibromotor4_set_mode Vibro Motor 4 sets the desired mode function.

    err_t vibromotor4_set_mode ( vibromotor4_t *ctx, uint8_t mode_sel );
  • vibromotor4_set_duty_cycle Vibro Motor 4 sets PWM duty cycle.

    err_t vibromotor4_set_duty_cycle ( vibromotor4_t *ctx, float duty_cycle );
  • vibromotor4_pwm_start Vibro Motor 4 start PWM module.

    err_t vibromotor4_pwm_start ( vibromotor4_t *ctx );

Example Description

This library contains API for Vibro Motor 4 Click driver. The library initializes and defines the I2C bus drivers to write and read data from registers and PWM module.

The demo application is composed of two sections :

Application Init

The initialization of I2C and PWM module, log UART, and additional pins. After successful driver init, executes a default configuration and configures Vibro Motor 4 Click board™.


void application_init ( void )
{
    log_cfg_t log_cfg;                  /**< Logger config object. */
    vibromotor4_cfg_t vibromotor4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    vibromotor4_cfg_setup( &vibromotor4_cfg );
    VIBROMOTOR4_MAP_MIKROBUS( vibromotor4_cfg, MIKROBUS_1 );
    err_t init_flag = vibromotor4_init( &vibromotor4, &vibromotor4_cfg );
    if ( I2C_MASTER_ERROR == init_flag )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    vibromotor4_enable( &vibromotor4, VIBROMOTOR4_PROPERTY_ENABLE );
    Delay_ms ( 100 );

    vibromotor4_soft_rst( &vibromotor4 );
    Delay_ms ( 100 );

    vibromotor4_default_cfg ( &vibromotor4 );
    Delay_ms ( 100 );

    vibromotor4_set_duty_cycle( &vibromotor4, 0.0 );
    Delay_ms ( 100 );

    vibromotor4_pwm_start( &vibromotor4 );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

Application Task

This is an example that shows the use of Vibro Motor 4 Click board™. Changing duty cycle results in different vibrations. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 0;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    vibromotor4_set_duty_cycle ( &vibromotor4, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 1000 );

    if ( 5 == duty_cnt ) {
        duty_inc = -1;
    } else if ( 0 == duty_cnt ) {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.VibroMotor4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Buck-Boost 4 Click

0

Buck-Boost 4 Click is a compact add-on board that contains a buck-boost DC/DC converter with four integrated MOSFETs. This board features the TPS55289, a buck-boost converter from Texas Instruments. It can deliver on its output voltages from 0.8 up to 22V, from the input voltage in a range of 3 up to 30V. The output voltage can be programmed in 10mV steps.

[Learn More]

PWM driver click

0

If you need to control DC motors with loads up to 10A, PWM driver click is the perfect solution, thanks to the Silicon Lab Si8711CC one-channel isolator. It communicates with the target MCU over PWM pin, and runs on a 5V power supply.

[Learn More]

Current Limit 5 Click

0

Current Limit 5 Click is a compact add-on board representing a current-limiting solution. This board features the MIC2099, a current-limit power distribution switch from Microchip Technology. This Click board™ represents a programmable current limit solution with various protection features and fault indication, which operates from a 2.5V to 5.5V input voltage range. Also, the current limit is adjustable from 100mA up to 1.05A programmed through the MCP4561 digital potentiometer. This Click board™ is suitable for applications in portable equipment and condition monitoring or power supplies, protecting them in short circuits or other overload conditions.

[Learn More]