TOP Contributors

  1. MIKROE (2752 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139067 times)
  2. FAT32 Library (71594 times)
  3. Network Ethernet Library (56989 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29777 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SQI FLASH Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 181 times

Not followed.

License: MIT license  

SQI FLASH Click is based on the SST26VF064B, a 64 Mbit Serial Quad I/O flash device from Microchip. The chip utilizes 4-bit multiplexed I/O serial interface to boost the performance. The Click is a very fast solid-state, non-volatile data storage medium, that can be electrically erased and reprogrammed.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SQI FLASH Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SQI FLASH Click" changes.

Do you want to report abuse regarding "SQI FLASH Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


SQI FLASH Click

SQI FLASH Click is based on the SST26VF064B, a 64 Mbit Serial Quad I/O flash device from Microchip. The chip utilizes 4-bit multiplexed I/O serial interface to boost the performance. The Click is a very fast solid-state, non-volatile data storage medium, that can be electrically erased and reprogrammed.

sqiflash_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2021.
  • Type : SPI type

Software Support

We provide a library for the SqiFlash Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for SqiFlash Click driver.

Standard key functions :

  • sqiflash_cfg_setup Config Object Initialization function.

    void sqiflash_cfg_setup ( sqiflash_cfg_t *cfg );
  • sqiflash_init Initialization function.

    err_t sqiflash_init ( sqiflash_t *ctx, sqiflash_cfg_t *cfg );

Example key functions :

  • sqiflash_write_generic SQI FLASH Write.

    void sqiflash_write_generic( sqiflash_t *ctx, uint32_t address, uint8_t *buffer, uint32_t data_count );
  • sqiflash_read_generic SQI FLASH Read.

    void sqiflash_read_generic( sqiflash_t *ctx, uint32_t address, uint8_t *buffer, uint32_t data_count );
  • sqiflash_global_block_unlock SQI FLASH Global Block Unlock.

    void sqiflash_global_block_unlock( sqiflash_t *ctx );

Example Description

This is an example that demonstrates the use of the SQI FLASH Click board.

The demo application is composed of two sections :

Application Init

SQI FLASH Driver Initialization, initializes the Click by setting mikroBUS to approprieate logic levels, performing global block unlock and chip erase functions, reads manufacturer ID, memory type and device ID and logs it on USB UART terminal.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    sqiflash_cfg_t sqiflash_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    sqiflash_cfg_setup( &sqiflash_cfg );
    SQIFLASH_MAP_MIKROBUS( sqiflash_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == sqiflash_init( &sqiflash, &sqiflash_cfg ) ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }
    Delay_ms ( 300 );
    sqiflash_global_block_unlock( &sqiflash );
    Delay_ms ( 400 );
    sqiflash_chip_erase( &sqiflash );
    Delay_ms ( 300 );

    device_manufac = sqiflash_device_manufac( &sqiflash );
    log_printf( &logger, " Manufacturer ID: 0x%.2X\r\n", ( uint16_t ) device_manufac );
    device_type = sqiflash_device_type( &sqiflash );
    log_printf( &logger, " Memory Type: 0x%.2X\r\n", ( uint16_t ) device_type );
    device_id = sqiflash_device_id( &sqiflash );
    log_printf( &logger, " Device ID: 0x%.2X\r\n", ( uint16_t ) device_id );
    log_info( &logger, " Application Task " );
}

Application Task

Writing data to Click memory and displaying the read data via UART.


void application_task ( void ) 
{
    log_printf( &logger, " Writing data to address: 0x%.6LX\r\n", address );
    sqiflash_write_generic( &sqiflash, address, wr_data, 9 );
    log_printf( &logger, " Written data: %s", wr_data );
    log_printf( &logger, "\r\n Reading data from address: 0x%.6LX\r\n", address );
    sqiflash_read_generic( &sqiflash, address, rd_data, 9 );
    log_printf( &logger, " Read data: %s", rd_data );
    log_printf( &logger, "-------------------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SqiFlash

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Compass 3 Click

0

Compass 3 Click is an expansion board that can measure the three-axis magnetic field which is perfect for implementation in applications such as electric compasses. This board features MMC5883MA, a complete 3-axis magnetic sensor with signal processing from MEMSIC.

[Learn More]

Motion 2 click

5

Motion 2 Click is a based on EKMC1607112, PIR motion sensor from Panasonic Corporation that's used as human motion detector. Also it is featured with TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected.

[Learn More]

USB SPI click - Example

0

This is a sample program which demonstrates the use of USB SPI click This device accepts commands from SPI Terminal and sends appropriate bytes via SPI interface. It is very desirable tool for designing SPI slave devices such as sensors...

[Learn More]