TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140778 times)
  2. FAT32 Library (73361 times)
  3. Network Ethernet Library (58201 times)
  4. USB Device Library (48387 times)
  5. Network WiFi Library (43981 times)
  6. FT800 Library (43540 times)
  7. GSM click (30471 times)
  8. mikroSDK (29177 times)
  9. PID Library (27173 times)
  10. microSD click (26848 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EERAM 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: EERAM

Downloaded: 141 times

Not followed.

License: MIT license  

EERAM 3 Click is a compact add-on board that contains EERAM memory designed to retain data during power loss without the aid of external batteries. This board features the 48L256, a serial EERAM with SRAM memory core, including hidden EEPROM backup from Microchip Technology.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EERAM 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EERAM 3 Click" changes.

Do you want to report abuse regarding "EERAM 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


EERAM 3 Click

EERAM 3 Click is a compact add-on board that contains EERAM memory designed to retain data during power loss without the aid of external batteries. This board features the 48L256, a serial EERAM with SRAM memory core, including hidden EEPROM backup from Microchip Technology.

eeram3_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2021.
  • Type : SPI type

Software Support

We provide a library for the EERAM3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EERAM3 Click driver.

Standard key functions :

  • eeram3_cfg_setup Config Object Initialization function.

    void eeram3_cfg_setup ( eeram3_cfg_t *cfg );
  • eeram3_init Initialization function.

    err_t eeram3_init ( eeram3_t *ctx, eeram3_cfg_t *cfg );
  • eeram3_default_cfg Click Default Configuration function.

    void eeram3_default_cfg ( eeram3_t *ctx );

Example key functions :

  • eeram3_memory_secure_write This function securely writes a desired number of data bytes starting from the selected memory address.

    err_t eeram3_memory_secure_write ( eeram3_t *ctx, uint16_t address, uint8_t *data_in, uint8_t len );
  • eeram3_memory_secure_read This function securely reads a desired number of data bytes starting from the selected memory address.

    err_t eeram3_memory_secure_read ( eeram3_t *ctx, uint16_t address, uint8_t *data_out, uint8_t len );
  • eeram3_set_block_protection This function sets the block protection bits of the Status register.

    err_t eeram3_set_block_protection ( eeram3_t *ctx, uint8_t block_protect );

Example Description

This example demonstrates the use of EERAM 3 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;        /**< Logger config object. */
    eeram3_cfg_t eeram3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeram3_cfg_setup( &eeram3_cfg );
    EERAM3_MAP_MIKROBUS( eeram3_cfg, MIKROBUS_1 );

    if ( SPI_MASTER_ERROR == eeram3_init( &eeram3, &eeram3_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }
    eeram3_default_cfg ( &eeram3 );
    log_info( &logger, " Application Task " );
}

Application Task

Writes a desired number of bytes to the memory and then verifies that it's written correctly by reading from the same memory location and displaying the memory content on the USB UART.


void application_task ( void )
{
    uint8_t data_buf[ 64 ] = { 0 };
    if ( EERAM3_OK == eeram3_memory_secure_write ( &eeram3, STARTING_ADDRESS, 
                                                   DEMO_TEXT_MESSAGE, strlen ( DEMO_TEXT_MESSAGE ) ) )
    {
        log_printf ( &logger, "Data written to address 0x%.4X: %s\r\n", ( uint16_t ) STARTING_ADDRESS, 
                                                                          ( char * ) DEMO_TEXT_MESSAGE );
    }
    Delay_ms ( 100 );

    if ( EERAM3_OK == eeram3_memory_secure_read ( &eeram3, STARTING_ADDRESS, 
                                                  data_buf, strlen ( DEMO_TEXT_MESSAGE ) ) )
    {
        log_printf ( &logger, "Data read from address 0x%.4X: %s\r\n\n", ( uint16_t ) STARTING_ADDRESS, 
                                                                                      data_buf );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EERAM3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Scanner Click

0

Scanner Click as his name said, is an optical scanner expansion board for building optical cost-sensitive scanners and printers.

[Learn More]

CAN Bus Click

0

CAN Bus Click is a compact add-on board that provides a link between the CAN protocol controller and the physical wires of the bus lines in a control area network (CAN). This board features the MAX13054, an industry-standard, high-speed CAN transceiver with extended ±80V fault protection from Maxim Integrated.

[Learn More]

Adapter Click

0

Adapter Click™ is a breakout board which simplifies connection of add-on boards with IDC10 headers to mikroBUS™ socket. There are two ways of establishing connection: using male or female IDC10 connectors.

[Learn More]