TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141803 times)
  2. FAT32 Library (74940 times)
  3. Network Ethernet Library (59303 times)
  4. USB Device Library (49298 times)
  5. Network WiFi Library (45094 times)
  6. FT800 Library (44656 times)
  7. GSM click (31275 times)
  8. mikroSDK (30205 times)
  9. microSD click (27654 times)
  10. PID Library (27561 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Waveform 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Clock generator

Downloaded: 496 times

Not followed.

License: MIT license  

Waveform 4 Click is a compact add-on board that represents a high-performance signal generator. This board features the AD9106, a quad-channel, 12-bit, 180MSPS waveform generator, integrating on-chip static random access memory (SRAM) and direct digital synthesis (DDS) for complex waveform generation from Analog Devices. The DDS is up to a 180 MHz master clock sinewave generator with a 24-bit tuning word allowing 10.8 Hz/LSB frequency resolution.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Waveform 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Waveform 4 Click" changes.

Do you want to report abuse regarding "Waveform 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Waveform 4 Click

Waveform 4 Click is a compact add-on board that represents a high-performance signal generator. This board features the AD9106, a quad-channel, 12-bit, 180MSPS waveform generator, integrating on-chip static random access memory (SRAM) and direct digital synthesis (DDS) for complex waveform generation from Analog Devices. The DDS is up to a 180 MHz master clock sinewave generator with a 24-bit tuning word allowing 10.8 Hz/LSB frequency resolution.

waveform4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2021.
  • Type : SPI type

Software Support

We provide a library for the Waveform4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Waveform4 Click driver.

Standard key functions :

  • waveform4_cfg_setup Config Object Initialization function.

    void waveform4_cfg_setup ( waveform4_cfg_t *cfg );
  • waveform4_init Initialization function.

    err_t waveform4_init ( waveform4_t *ctx, waveform4_cfg_t *cfg );
  • waveform4_default_cfg Click Default Configuration function.

    err_t waveform4_default_cfg ( waveform4_t *ctx );

Example key functions :

  • waveform4_set_frequency This function sets the sine and cosine (DDS) waves output frequency.

    err_t waveform4_set_frequency ( waveform4_t *ctx, uint32_t freq );
  • waveform4_set_gain This function sets the gain level of a desired channel.

    err_t waveform4_set_gain ( waveform4_t *ctx, uint8_t channel, float gain );
  • waveform4_set_wave_output This function sets a desired output signal wave to the selected channel.

    err_t waveform4_set_wave_output ( waveform4_t *ctx, uint8_t channel, uint8_t wave );

Example Description

This example demonstrates the use of Waveform 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which resets the registers and sets the sine wave output with default gain and default frequency for all channels. After that it displays the list of supported commands on the USB UART.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    waveform4_cfg_t waveform4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    waveform4_cfg_setup( &waveform4_cfg );
    WAVEFORM4_MAP_MIKROBUS( waveform4_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == waveform4_init( &waveform4, &waveform4_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( WAVEFORM4_ERROR == waveform4_default_cfg ( &waveform4 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    waveform4_display_commands ( );
    log_info( &logger, " Application Task " );
}

Application Task

Depending on the command character received from USB UART it changes the signal frequency, gain or wave of the selected channel.


void application_task ( void )
{
    uint8_t command = 0;
    if ( log_read ( &logger, &command, 1 ) > 0 ) 
    {
        waveform4_parse_command ( command );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Waveform4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LightRanger 10 Click

0

LightRanger 10 Click is a compact add-on board suitable for range-finding and distance sensing applications. This board features the VL53L4CX, a ToF (time of flight) optical distance sensor with an extended target detection range from STMicroelectronics. Specifically designed for long-range and multi-target measurements, the VL53L4CX provides very accurate distance measurements up to 6m with excellent results over short distances and 18° FoV (Field of View), which improves performances under ambient light. Data processing is performed inside the VL53L4CX, providing distance information and confidence values through its I2C interface.

[Learn More]

UNI HALL Click

0

UNI HALL Click is a simple solution for adding an unipolar Hall switch to your design. It carries the Melexis US5881 unipolar Hall-effect switch and a 74LVC1T45 single bit, dual supply translating transceiver.

[Learn More]

ADC 21 Click

0

ADC 21 Click is a compact add-on board that converts an analog voltage into a digital representation. This board features the ADC1283, a low-power, eight-channel pure CMOS 12-bit analog-to-digital converter from STMicroelectronics. The ADC1283 is specified for conversion from 50ksps to 200ksps. Its architecture is based on a successive approximation register with an internal track-and-hold cell. It features eight single-ended multiplexed inputs, where the output serial data is straight binary and SPI-compatible.

[Learn More]