We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.14
mikroSDK Library: 2.0.0.0
Category: Amplifier
Downloaded: 185 times
Not followed.
License: MIT license
GainAMP Click carries the LTC6912 dual channel, low noise, digitally programmable gain amplifier (PGA).
Do you want to subscribe in order to receive notifications regarding "GainAMP Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "GainAMP Click" changes.
Do you want to report abuse regarding "GainAMP Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4784_gainamp_click.zip [457.02KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
GainAMP Click carries the LTC6912 dual channel, low noise, digitally programmable gain amplifier (PGA).
We provide a library for the GainAMP Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for GainAMP Click driver.
gainamp_cfg_setup
Config Object Initialization function.
void gainamp_cfg_setup ( gainamp_cfg_t *cfg );
gainamp_init
Initialization function.
err_t gainamp_init ( gainamp_t *ctx, gainamp_cfg_t *cfg );
gainamp_default_cfg
Click Default Configuration function.
err_t gainamp_default_cfg ( gainamp_t *ctx );
gainamp_read_an_pin_value
GainAMP read AN pin value function.
err_t gainamp_read_an_pin_value ( gainamp_t *ctx, uint16_t *data_out );
gainamp_read_an_pin_voltage
GainAMP read AN pin voltage level function.
err_t gainamp_read_an_pin_voltage ( gainamp_t *ctx, float *data_out );
gainamp_set_gain
Function for sets gain of the GainAMP Click.
void gainamp_set_gain ( gainamp_t *ctx, uint8_t gain );
This is an example that demonstrates the use of the GainAMP Click board.
The demo application is composed of two sections :
Initializes SPI module and set CS pin and RST pin as OUTPUT, initialization driver init and resets chip.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
gainamp_cfg_t gainamp_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
gainamp_cfg_setup( &gainamp_cfg );
GAINAMP_MAP_MIKROBUS( gainamp_cfg, MIKROBUS_1 );
err_t init_flag = gainamp_init( &gainamp, &gainamp_cfg );
if ( ( SPI_MASTER_ERROR == init_flag ) || ( ADC_ERROR == init_flag ) ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
gainamp_reset( &gainamp );
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
}
Sets the gain for both channels, channel A and channel B.
void application_task ( void )
{
gainamp_set_gain( &gainamp, GAINAMP_CHANNEL_A_x1 | GAINAMP_CHANNEL_B_x5 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
gainamp_set_gain( &gainamp, GAINAMP_CHANNEL_A_x10 | GAINAMP_CHANNEL_B_x100 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.