TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141334 times)
  2. FAT32 Library (74174 times)
  3. Network Ethernet Library (58758 times)
  4. USB Device Library (48850 times)
  5. Network WiFi Library (44559 times)
  6. FT800 Library (44145 times)
  7. GSM click (30881 times)
  8. mikroSDK (29718 times)
  9. PID Library (27368 times)
  10. microSD click (27291 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GainAMP Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Amplifier

Downloaded: 319 times

Not followed.

License: MIT license  

GainAMP Click carries the LTC6912 dual channel, low noise, digitally programmable gain amplifier (PGA).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GainAMP Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GainAMP Click" changes.

Do you want to report abuse regarding "GainAMP Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GainAMP Click

GainAMP Click carries the LTC6912 dual channel, low noise, digitally programmable gain amplifier (PGA).

gainamp_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2021.
  • Type : SPI type

Software Support

We provide a library for the GainAMP Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GainAMP Click driver.

Standard key functions :

  • gainamp_cfg_setup Config Object Initialization function.

    void gainamp_cfg_setup ( gainamp_cfg_t *cfg );
  • gainamp_init Initialization function.

    err_t gainamp_init ( gainamp_t *ctx, gainamp_cfg_t *cfg );
  • gainamp_default_cfg Click Default Configuration function.

    err_t gainamp_default_cfg ( gainamp_t *ctx );

Example key functions :

  • gainamp_read_an_pin_value GainAMP read AN pin value function.

    err_t gainamp_read_an_pin_value ( gainamp_t *ctx, uint16_t *data_out );
  • gainamp_read_an_pin_voltage GainAMP read AN pin voltage level function.

    err_t gainamp_read_an_pin_voltage ( gainamp_t *ctx, float *data_out );
  • gainamp_set_gain Function for sets gain of the GainAMP Click.

    void gainamp_set_gain ( gainamp_t *ctx, uint8_t gain );

Example Description

This is an example that demonstrates the use of the GainAMP Click board.

The demo application is composed of two sections :

Application Init

Initializes SPI module and set CS pin and RST pin as OUTPUT, initialization driver init and resets chip.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gainamp_cfg_t gainamp_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    gainamp_cfg_setup( &gainamp_cfg );
    GAINAMP_MAP_MIKROBUS( gainamp_cfg, MIKROBUS_1 );
    err_t init_flag  = gainamp_init( &gainamp, &gainamp_cfg );
    if ( ( SPI_MASTER_ERROR == init_flag ) || ( ADC_ERROR == init_flag ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    gainamp_reset( &gainamp );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
}

Application Task

Sets the gain for both channels, channel A and channel B.


void application_task ( void )
{
    gainamp_set_gain( &gainamp, GAINAMP_CHANNEL_A_x1 | GAINAMP_CHANNEL_B_x5 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    gainamp_set_gain( &gainamp, GAINAMP_CHANNEL_A_x10 | GAINAMP_CHANNEL_B_x100 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GainAMP

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MCP73213 click

7

MCP73213 click carries the MCP73213 dual-cell Li-Ion/Li-Polymer battery charge management controller with Input overvoltage protection from Microchip. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI.

[Learn More]

IPD 2015 Click

0

IPD Click is a compact add-on board for controlling inductive and resistive loads in industrial automation and other demanding applications. This board features the TPD2015FN, an 8-channel high-side switch with MOSFET outputs from Toshiba Semiconductor.

[Learn More]

6DOF IMU 6 Click

0

6DOF IMU 6 Click features a 6-axis MotionTracking device that combines a 3-axis gyroscope, a 3-axis accelerometer, and a Digital Motion Processor™ (DMP) labeled as ICM-20689. The ICM-20689 from company TDK InvenSense includes on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The gyroscope and accelerometer are full-scale range, user-programmable sensors with factory-calibrated initial sensitivity for reduced production-line calibration requirements.

[Learn More]