TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141679 times)
  2. FAT32 Library (74727 times)
  3. Network Ethernet Library (59203 times)
  4. USB Device Library (49213 times)
  5. Network WiFi Library (44988 times)
  6. FT800 Library (44517 times)
  7. GSM click (31195 times)
  8. mikroSDK (30081 times)
  9. microSD click (27577 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GainAMP Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Amplifier

Downloaded: 366 times

Not followed.

License: MIT license  

GainAMP Click carries the LTC6912 dual channel, low noise, digitally programmable gain amplifier (PGA).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GainAMP Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GainAMP Click" changes.

Do you want to report abuse regarding "GainAMP Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GainAMP Click

GainAMP Click carries the LTC6912 dual channel, low noise, digitally programmable gain amplifier (PGA).

gainamp_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2021.
  • Type : SPI type

Software Support

We provide a library for the GainAMP Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GainAMP Click driver.

Standard key functions :

  • gainamp_cfg_setup Config Object Initialization function.

    void gainamp_cfg_setup ( gainamp_cfg_t *cfg );
  • gainamp_init Initialization function.

    err_t gainamp_init ( gainamp_t *ctx, gainamp_cfg_t *cfg );
  • gainamp_default_cfg Click Default Configuration function.

    err_t gainamp_default_cfg ( gainamp_t *ctx );

Example key functions :

  • gainamp_read_an_pin_value GainAMP read AN pin value function.

    err_t gainamp_read_an_pin_value ( gainamp_t *ctx, uint16_t *data_out );
  • gainamp_read_an_pin_voltage GainAMP read AN pin voltage level function.

    err_t gainamp_read_an_pin_voltage ( gainamp_t *ctx, float *data_out );
  • gainamp_set_gain Function for sets gain of the GainAMP Click.

    void gainamp_set_gain ( gainamp_t *ctx, uint8_t gain );

Example Description

This is an example that demonstrates the use of the GainAMP Click board.

The demo application is composed of two sections :

Application Init

Initializes SPI module and set CS pin and RST pin as OUTPUT, initialization driver init and resets chip.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gainamp_cfg_t gainamp_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    gainamp_cfg_setup( &gainamp_cfg );
    GAINAMP_MAP_MIKROBUS( gainamp_cfg, MIKROBUS_1 );
    err_t init_flag  = gainamp_init( &gainamp, &gainamp_cfg );
    if ( ( SPI_MASTER_ERROR == init_flag ) || ( ADC_ERROR == init_flag ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    gainamp_reset( &gainamp );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
}

Application Task

Sets the gain for both channels, channel A and channel B.


void application_task ( void )
{
    gainamp_set_gain( &gainamp, GAINAMP_CHANNEL_A_x1 | GAINAMP_CHANNEL_B_x5 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    gainamp_set_gain( &gainamp, GAINAMP_CHANNEL_A_x10 | GAINAMP_CHANNEL_B_x100 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GainAMP

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

TempHum 21 Click

0

Temp&Hum 21 Click is a compact add-on board representing temperature and humidity sensing solution. This board features the HIH8130-021-001, a highly accurate, fully-calibrated digital humidity and temperature sensor from Honeywell Sensing and Productivity Solutions. This sensor, characterized by its high accuracy (±2% RH and ±0.5°C over a wide operating temperature range) and high resolution, provides factory-calibrated 14-bit data to the host controller with a configurable I2C interface. It also comes with alarm features with selectable alarm thresholds by an MCU or externally.

[Learn More]

TempHum 18 Click

0

Temp&Hum 18 Click is a compact add-on board that represents temperature and humidity sensing solutions. This board features the HS3003, a highly accurate, fully calibrated relative humidity and temperature sensor from Renesas. It features proprietary sensor-level protection, ensuring high reliability and long-term stability. Integrated calibration and temperature-compensation logic provides fully corrected RH and temperature values via standard I2C output. No user calibration of the output data is required. The high accuracy, fast measurement response time, and long-term stability make this Click board™ ideal for various temperature and humidity-related applications and a vast number of applications ranging from portable devices to products designed for harsh environments.

[Learn More]

2x4 RGB Click

0

2x4 RGB Click is a compact add-on board for dynamic and colorful lighting control. This board features an array of 2x4 RGB LEDs (WL-ICLED 1312121320437) from Würth Elektronik, featuring individual control of each red, green, and blue component via an integrated IC and pulse width modulation (PWM) technology. The board also includes an LSF0102 voltage translator, ensuring seamless operation with both 3.3V and 5V logic systems, and supports MIKROE’s innovative Click Snap feature for flexible installation options. With its precise color control and flexible design, 2x4 RGB Click is ideal for applications such as ambient lighting, displays, and visual indicators in various consumer electronics and industrial environments.

[Learn More]