TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139568 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43222 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28292 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 15 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 219 times

Not followed.

License: MIT license  

Brushless 15 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TB9061AFNG, an automotive pre-driver that incorporates a sensorless controller for driving a 3-phase full-wave brushless DC motor from Toshiba Semiconductor. The TB9061AFNG achieves 120° rectangular wave motor control by using an input signal line that measures the induced voltage of the motors and three-phase motor output without using Hall sensors, rated for an operating voltage range of 6 to 18V. Motor rotation can be controlled by either the DC or the PWM input signal. Besides, it features several diagnostic circuits and drive-control functions such as motor lock detection, step-out detection, over-current/over-temperature detection, and many more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 15 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 15 Click" changes.

Do you want to report abuse regarding "Brushless 15 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 15 Click

Brushless 15 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TB9061AFNG, an automotive pre-driver that incorporates a sensorless controller for driving a 3-phase full-wave brushless DC motor from Toshiba Semiconductor. The TB9061AFNG achieves 120° rectangular wave motor control by using an input signal line that measures the induced voltage of the motors and three-phase motor output without using Hall sensors, rated for an operating voltage range of 6 to 18V. Motor rotation can be controlled by either the DC or the PWM input signal. Besides, it features several diagnostic circuits and drive-control functions such as motor lock detection, step-out detection, over-current/over-temperature detection, and many more.

brushless15_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2021.
  • Type : PWM type

Software Support

We provide a library for the Brushless 15 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 15 Click driver.

Standard key functions :

  • brushless15_cfg_setup Config Object Initialization function.

    void brushless15_cfg_setup ( brushless15_cfg_t *cfg );
  • brushless15_init Initialization function.

    err_t brushless15_init ( brushless15_t *ctx, brushless15_cfg_t *cfg );
  • brushless15_default_cfg Click Default Configuration function.

    err_t brushless15_default_cfg ( brushless15_t *ctx );

Example key functions :

  • brushless15_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t brushless15_set_duty_cycle ( brushless15_t *ctx, float duty_cycle );
  • brushless15_enable_device This function enables the device by setting the EN pin to low logic state.

    void brushless15_enable_device ( brushless15_t *ctx );
  • brushless15_switch_direction This function switches the direction by toggling the DIR pin state.

    void brushless15_switch_direction ( brushless15_t *ctx );

Example Description

This example demonstrates the use of the Brushless 15 Click board by driving the motor in both directions at different speeds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless15_cfg_t brushless15_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless15_cfg_setup( &brushless15_cfg );
    BRUSHLESS15_MAP_MIKROBUS( brushless15_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == brushless15_init( &brushless15, &brushless15_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS15_ERROR == brushless15_default_cfg ( &brushless15 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Controls the motor speed by changing the PWM duty cycle once per second. The duty cycle ranges from 20% to 80%. At the minimal speed, the motor switches direction. Each step will be logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    static int8_t duty_cnt = 2;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    brushless15_set_duty_cycle ( &brushless15, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 1000 );
    duty_cnt += duty_inc;
    if ( 8 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 1 == duty_cnt ) 
    {
        duty_inc = 1;
        duty_cnt = 2;
        log_printf( &logger, " Switch direction\r\n\n" );
        brushless15_switch_direction ( &brushless15 );
    }
}

Note

The maximal PWM Clock frequency for this Click board is 1 kHz. So, depending on the selected setup the user will need to lower the MCU's main clock frequency in the setup in order to get the PWM clock frequency down to 1 kHz.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless15

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB UART 3 Click

0

USB UART 3 Click is a versatile and feature-rich USB to UART interface from Silicon Labs.

[Learn More]

OBDII Click

0

OBDII Click offers a unique opportunity to tap into the car diagnostic systems. It features the STN1110 Multiprotocol OBD to UART Interface, developed by the ScanTool technologies. This Click can be used for the communication with the Electronic Control Unit (ECU) of a vehicle, via several different OBD II diagnostic protocols such as CAN, K LINE, L LINE and J1850. The STN1110 IC is used to process requests sent by the MCU via the UART interface and return back the responses from the ECU network nodes.

[Learn More]

DC MOTOR 7 Click

0

DC MOTOR 7 Click is a dual brushed DC motor driving Click board™, featuring the advanced PWM chopper-type integrated DC motor driver, labeled as TB67H400AFTG.

[Learn More]