We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.14
mikroSDK Library: 2.0.0.0
Category: ReRAM
Downloaded: 171 times
Not followed.
License: MIT license
ReRAM 2 Click is a compact add-on board containing highly reliable resistive random-access memory. This board features the MB85AS8MT, an 8Mbit memory organized as 1,048,576 words of 8 bits from Fujitsu Semiconductor. The MB85AS8MT uses the resistance-variable memory process and silicon-gate CMOS process technologies to form nonvolatile memory cells. This SPI configurable ReRAM can withstand many write cycles (1x106 rewrite operations), has a data retention period greater than ten years, and can read and write to random addresses with very negligible delay. This Click board™ is ideal as a nonvolatile storage media or temporary RAM expansion for storing variables in any embedded application that requires rapid writes and unlimited endurance.
Do you want to subscribe in order to receive notifications regarding "ReRAM 2 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "ReRAM 2 Click" changes.
Do you want to report abuse regarding "ReRAM 2 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4839_reram_2_click.zip [423.18KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
ReRAM 2 Click is a compact add-on board containing highly reliable resistive random-access memory. This board features the MB85AS8MT, an 8Mbit memory organized as 1,048,576 words of 8 bits from Fujitsu Semiconductor. The MB85AS8MT uses the resistance-variable memory process and silicon-gate CMOS process technologies to form nonvolatile memory cells. This SPI configurable ReRAM can withstand many write cycles (1x106 rewrite operations), has a data retention period greater than ten years, and can read and write to random addresses with very negligible delay. This Click board™ is ideal as a nonvolatile storage media or temporary RAM expansion for storing variables in any embedded application that requires rapid writes and unlimited endurance.
We provide a library for the ReRAM 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for ReRAM 2 Click driver.
reram2_cfg_setup
Config Object Initialization function.
void reram2_cfg_setup ( reram2_cfg_t *cfg );
reram2_init
Initialization function.
err_t reram2_init ( reram2_t *ctx, reram2_cfg_t *cfg );
reram2_default_cfg
Click Default Configuration function.
err_t reram2_default_cfg ( reram2_t *ctx );
reram2_read_device_id
ReRAM 2 read device ID function.
err_t reram2_read_device_id ( reram2_t *ctx, reram2_dev_id_t *dev_id );
reram2_write_memory
ReRAM 2 write memory function.
err_t reram2_write_memory ( reram2_t *ctx, uint32_t mem_addr, uint8_t *data_in, uint16_t len );
reram2_read_memory
ReRAM 2 read memory function.
err_t reram2_read_memory ( reram2_t *ctx, uint32_t mem_addr, uint8_t *data_out, uint16_t len );
This library contains API for ReRAM 2 Click driver.
The demo application is composed of two sections :
Initializes SPI driver and log UART. After driver initialization the app set default settings, performs device wake-up, check Device ID, set Write Enable Latch command and write demo_data string ( mikroE ), starting from the selected memory_addr ( 1234 ).
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
reram2_cfg_t reram2_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
reram2_cfg_setup( &reram2_cfg );
RERAM2_MAP_MIKROBUS( reram2_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == reram2_init( &reram2, &reram2_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( RERAM2_ERROR == reram2_default_cfg ( &reram2 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
reram2_wake_up( &reram2 );
Delay_ms ( 100 );
if ( RERAM2_ERROR == reram2_check_device_id( &reram2 ) )
{
log_error( &logger, " Communication Error. " );
log_info( &logger, " Please, run program again... " );
for( ; ; );
}
reram2_send_command( &reram2, RERAM2_CMD_WREN );
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
memory_addr = 1234;
log_printf( &logger, "\r\n Write data : %s", demo_data );
reram2_write_memory( &reram2, memory_addr, &demo_data[ 0 ], 9 );
log_printf( &logger, "-----------------------\r\n" );
Delay_ms ( 1000 );
}
This is an example that demonstrates the use of the ReRAM 2 Click board™. In this example, we read and display a data string, which we have previously written to memory, starting from the selected memory_addr ( 1234 ). Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
static char rx_data[ 9 ] = { 0 };
reram2_read_memory( &reram2, memory_addr, &rx_data[ 0 ], 9 );
log_printf( &logger, " Read data : %s", rx_data );
log_printf( &logger, "-----------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.