TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139559 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47607 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42551 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 13 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 181 times

Not followed.

License: MIT license  

LED Driver 13 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the A80604-1, a 4-channel LED driver designed at a switching frequency of 400kHz that provides 150mA per channel from Allegro Microsystems. It is powered by an external power supply in the range of 6V to 18V, providing an output voltage of approximately 26V, which is used to power LEDs connected to LED channels. On the logical side, this board uses both 3V3 and 5V with mikroBUS™ power rails and communicates with the MCU via GPIO pins. In addition, the user is given the option of analog or digital LED dimming selection, using a PWM pin from the mikroBUS™ socket or via an onboard potentiometer/external PWM signal.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 13 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 13 Click" changes.

Do you want to report abuse regarding "LED Driver 13 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LED Driver 13 Click

LED Driver 13 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the A80604-1, a 4-channel LED driver designed at a switching frequency of 400kHz that provides 150mA per channel from Allegro Microsystems. It is powered by an external power supply in the range of 6V to 18V, providing an output voltage of approximately 26V, which is used to power LEDs connected to LED channels. On the logical side, this board uses both 3V3 and 5V with mikroBUS™ power rails and communicates with the MCU via GPIO pins. In addition, the user is given the option of analog or digital LED dimming selection, using a PWM pin from the mikroBUS™ socket or via an onboard potentiometer/external PWM signal.

leddriver13_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Dec 2021.
  • Type : PWM type

Software Support

We provide a library for the LED Driver 13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LED Driver 13 Click driver.

Standard key functions :

  • leddriver13_cfg_setup Config Object Initialization function.

    void leddriver13_cfg_setup ( leddriver13_cfg_t *cfg );
  • leddriver13_init Initialization function.

    err_t leddriver13_init ( leddriver13_t *ctx, leddriver13_cfg_t *cfg );
  • leddriver13_default_cfg Click Default Configuration function.

    err_t leddriver13_default_cfg ( leddriver13_t *ctx );

Example key functions :

  • leddriver13_set_enable LED Driver 13 set enable function.

    err_t leddriver13_set_enable ( leddriver13_t *ctx );
  • leddriver13_pwm_start LED Driver 13 start PWM module.

    err_t leddriver13_pwm_start ( leddriver13_t *ctx );
  • leddriver13_set_duty_cycle LED Driver 13 sets PWM duty cycle.

    err_t leddriver13_set_duty_cycle ( leddriver13_t *ctx, float duty_cycle );

Example Description

This library contains API for LED Driver 13 Click driver.

The demo application is composed of two sections :

Application Init

Initializes the driver and executes the Click default configuration which starts the PWM module and sets the LEDs current to minimum.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    leddriver13_cfg_t leddriver13_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    leddriver13_cfg_setup( &leddriver13_cfg );
    LEDDRIVER13_MAP_MIKROBUS( leddriver13_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == leddriver13_init( &leddriver13, &leddriver13_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( LEDDRIVER13_ERROR == leddriver13_default_cfg ( &leddriver13 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );

    leddriver13_set_duty_cycle ( &leddriver13, 0.01 );
    Delay_ms ( 100 );
}

Application Task

This is an example that demonstrates the use of the LED Driver 13 Click board™. The app controls the LEDs brightness by changing the PWM duty cycle. The PWM duty cycle percentage will be logged on the USB UART.


 void application_task ( void ) 
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 1000.0;

    leddriver13_set_duty_cycle ( &leddriver13, duty );
    log_printf( &logger, "> Duty: %.1f%%\r\n", duty * 100 );
    Delay_ms ( 100 );

    if ( 30 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
} 

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LEDDriver13

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

CAN SPI 5V click

0

This is code that shows simple connection of two CAN SPI modules with MCP2551.<br/> Messages are sent by pressing PortB buttons and received message can be seen on PortD LEDs.<br/>

[Learn More]

Audio DAC Click

0

Audio DAC Click is a compact add-on board perfect for upgrading your audio equipment. This board features the PCM5142, a 32-bit 384kHz audio stereo DAC with the DIR9001 digital audio receiver from Texas Instruments. The DIR9001 can receive 24-bit/96kHz signals at the highest via S/PDIF optical cable and complies with various digital audio standards, like IEC60958-3, JEITA CPR-1205, AES3, and EBUtech3250. The DIR9001's output is then processed via a stereo audio DAC, the PCM5142, with the latest generation of TI's advanced segment-DAC architecture to achieve excellent dynamic performance, detailed heights, and an exceptionally good sound stage.

[Learn More]

GPS click - L10 - Examples

0

Simple example which demonstrates usage of the GPS Click board with QUECTEL GPS module.
It displays a map of the world on the TFT and shows the location of the GPS module on it.
Also it displays current coordinates of GPS receiver.

[Learn More]