We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.12
mikroSDK Library: 2.0.0.0
Category: Pressure
Downloaded: 132 times
Not followed.
License: MIT license
Barometer 7 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the KP264XTMA1, a high-accuracy digital barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP264XTMA1 is surface micromachined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology that converts pressure into a 10-bit digital value and sends the information via the SPI interface. It measures pressure from 40kPa up to 115kPa with an accuracy of ±1.5kPa over a wide operating temperature range.
Do you want to subscribe in order to receive notifications regarding "Barometer 7 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Barometer 7 Click" changes.
Do you want to report abuse regarding "Barometer 7 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4864_barometer_7_clic.zip [416.55KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Barometer 7 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the KP264XTMA1, a high-accuracy digital barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP264XTMA1 is surface micromachined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology that converts pressure into a 10-bit digital value and sends the information via the SPI interface. It measures pressure from 40kPa up to 115kPa with an accuracy of ±1.5kPa over a wide operating temperature range.
We provide a library for the Barometer 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Barometer 7 Click driver.
barometer7_cfg_setup
Config Object Initialization function.
void barometer7_cfg_setup ( barometer7_cfg_t *cfg );
barometer7_init
Initialization function.
err_t barometer7_init ( barometer7_t *ctx, barometer7_cfg_t *cfg );
barometer7_default_cfg
Click Default Configuration function.
err_t barometer7_default_cfg ( barometer7_t *ctx );
barometer7_get_pressure
Barometer 7 get pressure function.
err_t barometer7_get_pressure ( barometer7_t *ctx, float *pressure );
barometer7_get_temperature
Barometer 7 get temperature function.
err_t barometer7_get_temperature ( barometer7_t *ctx, float *temperature );
This library contains API for Barometer 7 Click driver. The demo application reads and calculate temperature and pressure data.
The demo application is composed of two sections :
Initializes SPI driver and log UART. After driver initialization the app set default settings and display sensor identifier data.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
barometer7_cfg_t barometer7_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
barometer7_cfg_setup( &barometer7_cfg );
BAROMETER7_MAP_MIKROBUS( barometer7_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == barometer7_init( &barometer7, &barometer7_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
BAROMETER7_SET_DATA_SAMPLE_EDGE;
if ( BAROMETER7_ERROR == barometer7_default_cfg ( &barometer7 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
Delay_ms ( 100 );;
static barometer7_identifier_t id_data;
barometer7_get_identifier ( &barometer7, &id_data );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " > Supplier : %d <\r\n", ( uint16_t ) id_data.supplier );
log_printf( &logger, " > Silicon Version : %d <\r\n", ( uint16_t ) id_data.silicon_version );
log_printf( &logger, " > Metal Version : %d <\r\n", ( uint16_t ) id_data.metal_version );
log_printf( &logger, " > ASCI Name : %c <\r\n", id_data.asic_name );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
}
This is an example that demonstrates the use of the Barometer 7 Click board™. In this example, display the Pressure ( mBar ) and Temperature ( degree Celsius ) data. Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
static float pressure;
static float temperature;
barometer7_get_pressure( &barometer7, &pressure );
if ( BAROMETER7_NO_ERROR != barometer7.diagnosis )
{
display_error( );
}
log_printf( &logger, " Pressure : %.0f mbar\r\n", pressure );
barometer7_get_temperature( &barometer7, &temperature );
if ( BAROMETER7_NO_ERROR != barometer7.diagnosis )
{
display_error( );
}
log_printf( &logger, " Temperature : %.2f C\r\n", temperature );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
display_error
This function displays diagnosis error messages.static void display_error ( void );
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.