TOP Contributors

  1. MIKROE (2693 codes)
  2. Alcides Ramos (362 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137949 times)
  2. FAT32 Library (70759 times)
  3. Network Ethernet Library (56444 times)
  4. USB Device Library (46827 times)
  5. Network WiFi Library (42587 times)
  6. FT800 Library (41785 times)
  7. GSM click (29468 times)
  8. mikroSDK (27020 times)
  9. PID Library (26661 times)
  10. microSD click (25797 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Terminal 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-07-08

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Adapter

Downloaded: 134 times

Not followed.

License: MIT license  

Terminal 2 Click is an adapter Click board™ used as a mikroBUS™ socket expansion board. It provides an easy and elegant solution for adding the external connection capability to the Click board™, plugged on a mikroBUS™ socket. Featuring two 9-position 2.54mm pitch terminal blocks makes it an easy way to expand the development system's connectivity with the mikroBUS™ socket while keeping the bus free to use with any Click board™.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Terminal 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Terminal 2 click" changes.

Do you want to report abuse regarding "Terminal 2 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Terminal 2 click

Terminal 2 Click is an adapter Click board™ used as a mikroBUS™ socket expansion board. It provides an easy and elegant solution for adding the external connection capability to the Click board™, plugged on a mikroBUS™ socket. Featuring two 9-position 2.54mm pitch terminal blocks makes it an easy way to expand the development system's connectivity with the mikroBUS™ socket while keeping the bus free to use with any Click board™.

terminal2_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Dec 2021.
  • Type : GPIO type

Software Support

We provide a library for the Terminal 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Terminal 2 Click driver.

Standard key functions :

  • terminal2_cfg_setup Config Object Initialization function.

    void terminal2_cfg_setup ( terminal2_cfg_t *cfg );
  • terminal2_init Initialization function.

    err_t terminal2_init ( terminal2_t *ctx, terminal2_cfg_t *cfg );

Example key functions :

  • terminal2_set_all_pins_high This function sets all terminal pins to high logic level.

    void terminal2_set_all_pins_high ( terminal2_t *ctx );
  • terminal2_set_all_pins_low This function sets all terminal pins to low logic level.

    void terminal2_set_all_pins_low ( terminal2_t *ctx );
  • terminal2_toggle_pin This function toggles the specified pin logic level.

    void terminal2_toggle_pin ( digital_out_t *pin );

Example Description

This example demonstates the use of Terminal 2 click board by toggling all its pins.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger and sets all pins to low logic state.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    terminal2_cfg_t terminal2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    terminal2_cfg_setup( &terminal2_cfg );
    TERMINAL2_MAP_MIKROBUS( terminal2_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == terminal2_init( &terminal2, &terminal2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    terminal2_set_all_pins_low ( &terminal2 );

    log_info( &logger, " Application Task " );
}

Application Task

Toggles all pins from mikroBUS one by one in the span of 1 second between each pin toggle.

void application_task ( void )
{
    /**< Array of pins object addresses. */
    static digital_out_t *pin_addr[ 12 ] =
    {
        &terminal2.mosi,    // 0 MOSI
        &terminal2.miso,    // 1 MISO
        &terminal2.sck,     // 2 SCK
        &terminal2.cs,      // 3 CS
        &terminal2.rst,     // 4 RST
        &terminal2.an,      // 5 AN
        &terminal2.pwm,     // 6 PWM
        &terminal2.int_pin, // 7 INT
        &terminal2.tx_pin,  // 8 TX
        &terminal2.rx_pin,  // 9 RX
        &terminal2.scl,     // 10 SCL
        &terminal2.sda      // 11 SDA
    };
    static uint8_t pin_num = 0;
    log_printf( &logger, " Toggling pin: %u\r\n", ( uint16_t ) pin_num );
    terminal2_toggle_pin ( pin_addr[ pin_num ] );
    Delay_ms ( 1000 );
    terminal2_toggle_pin ( pin_addr[ pin_num ] );

    pin_num++;
    if ( 12 == pin_num )
    {
        pin_num = 0;
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Terminal2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

mikromedia for dsPIC33EP - Examples

0

Set of examples for mikromedia for dsPIC33EP.. Provided examples demonstrate working with mikromedia's various features and modules:

- Accelerometer
- MMC SD card
- MP3
- Serial Flash
- TFT
- Touch Panel
- USB

[Learn More]

ROTARY Y click

0

Rotary click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 yellow LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary click can be used with either a 3.3V or 5V power supply.

[Learn More]

SRAM 3 click

5

SRAM 3 Click is a 1Mb serial SRAM with a non-volatile SONOS storage element included with each memory cell, organized as 128k words of 8 bits each. This board features the ANV32AA1WDK66 a SRAM memory from Anvo-System Dresden.

[Learn More]