TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139842 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 17 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 147 times

Not followed.

License: MIT license  

Brushless 17 Click is a compact add-on board suitable for controlling brushless DC (BLDC) motors with any MCU. This board features the L6229Q, DMOS fully integrated three-phase BLDC motor driver with overcurrent protection from STMicroelectronics. This motor driver combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip, realized in BCD (Bipolar-CMOS-DMOS) multipower technology. It includes all the circuitry for a three-phase BLDC motor drive, including a three-phase DMOS bridge, a constant off-time PWM current controller, and the decoding logic for single-ended hall sensors that generate the required sequence for the power stage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 17 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 17 Click" changes.

Do you want to report abuse regarding "Brushless 17 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 17 Click

Brushless 17 Click is a compact add-on board suitable for controlling brushless DC (BLDC) motors with any MCU. This board features the L6229Q, DMOS fully integrated three-phase BLDC motor driver with overcurrent protection from STMicroelectronics. This motor driver combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip, realized in BCD (Bipolar-CMOS-DMOS) multipower technology. It includes all the circuitry for a three-phase BLDC motor drive, including a three-phase DMOS bridge, a constant off-time PWM current controller, and the decoding logic for single-ended hall sensors that generate the required sequence for the power stage.

brushless17_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jan 2022.
  • Type : PWM type

Software Support

We provide a library for the Brushless 17 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 17 Click driver.

Standard key functions :

  • brushless17_cfg_setup Config Object Initialization function.

    void brushless17_cfg_setup ( brushless17_cfg_t *cfg );
  • brushless17_init Initialization function.

    err_t brushless17_init ( brushless17_t *ctx, brushless17_cfg_t *cfg );
  • brushless17_default_cfg Click Default Configuration function.

    err_t brushless17_default_cfg ( brushless17_t *ctx );

Example key functions :

  • brushless17_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t brushless17_set_duty_cycle ( brushless17_t *ctx, float duty_cycle );
  • brushless17_switch_direction This function switches the direction by toggling the DIR pin state.

    void brushless17_switch_direction ( brushless17_t *ctx );
  • brushless17_get_diagnostic_pin This function returns the DIAG pin logic state.

    uint8_t brushless17_get_diagnostic_pin ( brushless17_t *ctx );

Example Description

This example demonstrates the use of the Brushless 17 Click board by driving the motor in both directions at different speeds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless17_cfg_t brushless17_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless17_cfg_setup( &brushless17_cfg );
    BRUSHLESS17_MAP_MIKROBUS( brushless17_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == brushless17_init( &brushless17, &brushless17_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS17_ERROR == brushless17_default_cfg ( &brushless17 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Controls the motor speed by changing the PWM duty cycle every 500ms. The duty cycle ranges from 40% to 80%. At the minimal speed, the motor switches direction. Each step will be logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    static int8_t duty_cnt = 4;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    brushless17_set_duty_cycle ( &brushless17, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    duty_cnt += duty_inc;
    if ( 8 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 3 == duty_cnt ) 
    {
        duty_inc = 1;
        duty_cnt = 4;
        log_printf( &logger, " Switch direction\r\n\n" );
        brushless17_switch_direction ( &brushless17 );
    }

    if ( !brushless17_get_diagnostic_pin ( &brushless17 ) )
    {
        log_info ( &logger, " An overcurrent or overtemperature event has occured " );
    }

    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless17

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Grid-Eye Click

0

64 individual thermal sensors build an image on a display. The detecting distance is 5m.

[Learn More]

Ambient 9 click

5

Ambient 9 Click is a compact add-on board that contains an integrated ambient light sensing and proximity detector with IR LED in an optical module.

[Learn More]

Color 17 Click

0

Color 17 Click is a compact add-on board representing an accurate color-sensing solution. This board features the OPT4048, a high-speed precision tristimulus XYZ color sensor from Texas Instruments. The sensor has four sensing channels and uses precision optical filters to mimic the normal vision of the human eye. The OPT4048 also has 12 configurable conversion times that range from 600μs up to 800ms, with measurements that can be read synchronously or asynchronously. It is not excessively sensitive to micro-shadows and the small particles on the optical surface.

[Learn More]