TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142022 times)
  2. FAT32 Library (75253 times)
  3. Network Ethernet Library (59472 times)
  4. USB Device Library (49492 times)
  5. Network WiFi Library (45268 times)
  6. FT800 Library (44880 times)
  7. GSM click (31415 times)
  8. mikroSDK (30402 times)
  9. microSD click (27778 times)
  10. PID Library (27614 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HAPTIC 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 218 times

Not followed.

License: MIT license  

Haptic 3 Click is a compact add-on board that uses advanced vibration patterns and waveforms to convey information to a user. This board features the DA7282, a linear resonant actuator (LRA), and an eccentric rotating mass (ERM) haptic driver from Dialog Semiconductor. The DA7282 features LRA or ERM drive capability with automatic closed-loop LRA resonant frequency tracking, guaranteeing consistency across LRA production tolerances. It also offers wideband operation that fully utilizes the capabilities of newer wideband and multi-directional LRAs, alongside three external general-purpose inputs for triggering up to six independent haptic sequences.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HAPTIC 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HAPTIC 3 Click" changes.

Do you want to report abuse regarding "HAPTIC 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


HAPTIC 3 Click

Haptic 3 Click is a compact add-on board that uses advanced vibration patterns and waveforms to convey information to a user. This board features the DA7282, a linear resonant actuator (LRA), and an eccentric rotating mass (ERM) haptic driver from Dialog Semiconductor. The DA7282 features LRA or ERM drive capability with automatic closed-loop LRA resonant frequency tracking, guaranteeing consistency across LRA production tolerances. It also offers wideband operation that fully utilizes the capabilities of newer wideband and multi-directional LRAs, alongside three external general-purpose inputs for triggering up to six independent haptic sequences.

haptic3_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2022.
  • Type : I2C type

Software Support

We provide a library for the HAPTIC 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for HAPTIC 3 Click driver.

Standard key functions :

  • haptic3_cfg_setup Config Object Initialization function.

    void haptic3_cfg_setup ( haptic3_cfg_t *cfg );
  • haptic3_init Initialization function.

    err_t haptic3_init ( haptic3_t *ctx, haptic3_cfg_t *cfg );
  • haptic3_default_cfg Click Default Configuration function.

    err_t haptic3_default_cfg ( haptic3_t *ctx );

Example key functions :

  • haptic3_set_vibration_level This function sets the motor vibration level.

    err_t haptic3_set_vibration_level ( haptic3_t *ctx, float level );
  • haptic3_get_vibration_level This function reads the motor vibration level.

    err_t haptic3_get_vibration_level ( haptic3_t *ctx, float *level );
  • haptic3_write_register This function writes a desired data to the selected register by using I2C serial interface.

    err_t haptic3_write_register ( haptic3_t *ctx, uint8_t reg, uint8_t data_in );

Example Description

This example demonstrates the use of HAPTIC 3 Click board by controlling the attached motor vibration level.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    haptic3_cfg_t haptic3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    haptic3_cfg_setup( &haptic3_cfg );
    HAPTIC3_MAP_MIKROBUS( haptic3_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == haptic3_init( &haptic3, &haptic3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HAPTIC3_ERROR == haptic3_default_cfg ( &haptic3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Changes the motor vibration level every 2 seconds from MAX to MIN, and displays the currently set level on the USB UART.

void application_task ( void )
{
    float vibration_level;
    if ( HAPTIC3_OK == haptic3_set_vibration_level ( &haptic3, HAPTIC3_VIBRATION_LEVEL_MAX ) )
    {
        if ( HAPTIC3_OK == haptic3_get_vibration_level ( &haptic3, &vibration_level ) )
        {
            log_printf( &logger, " Vibration level: %.3f \r\n\n", vibration_level );
        }
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    if ( HAPTIC3_OK == haptic3_set_vibration_level ( &haptic3, HAPTIC3_VIBRATION_LEVEL_MIN ) )
    {
        if ( HAPTIC3_OK == haptic3_get_vibration_level ( &haptic3, &vibration_level ) )
        {
            log_printf( &logger, " Vibration level: %.3f \r\n\n", vibration_level );
        }
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HAPTIC3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Cap Wheel 2 Click

0

CAP Wheel 2 Click is a capacitive touch sensor with round-shaped electrodes integrated on a Click board™. This Click can sense touch even through plastic, wood, or other dielectric materials, which can be used to protect the surface of the PCB and the sensor pad trace itself. Therefore, this Click board™ comes with overlay, made of plexiglass. Unlike the mechanical button, the capacitive touch button lasts much longer, it is not prone to damage and wear over time and it is very reliable. This Click board feature QS263B sensor which contains a ProxSense® module that uses patented technology to provide detection of proximity and touch conditions on numerous sensing lines.

[Learn More]

Accel 15 Click

0

Accel 15 Click is a compact add-on board that contains a longevity acceleration sensor. This board features the BMA490L, a high-performance 16-bit digital triaxial acceleration sensor with extended availability of up to ten years from Bosch Sensortech. It allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, ±8g, and ±16g in three axes with a configurable host interface that supports both I2C and SPI serial communication and with intelligent on-chip motion-triggered interrupt features. Intelligent signal processing and evaluation in the accelerometer ASIC enables advanced gesture recognition for numerous industrial IoT applications where low power consumption is vital. This Click board™ is suitable for home appliances, power tools, and other industrial products whose lifetime is essential.

[Learn More]

Rotary O 2 Click

0

Rotary O 2 Click is a compact add-on board that allows you to add a precision input knob to your design. This board features the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. It also features an LED ring composed of 16 individual orange LEDs that can visually represent the encoder position and more.

[Learn More]