TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141887 times)
  2. FAT32 Library (75036 times)
  3. Network Ethernet Library (59344 times)
  4. USB Device Library (49346 times)
  5. Network WiFi Library (45155 times)
  6. FT800 Library (44701 times)
  7. GSM click (31300 times)
  8. mikroSDK (30261 times)
  9. microSD click (27684 times)
  10. PID Library (27576 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HAPTIC 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 208 times

Not followed.

License: MIT license  

Haptic 3 Click is a compact add-on board that uses advanced vibration patterns and waveforms to convey information to a user. This board features the DA7282, a linear resonant actuator (LRA), and an eccentric rotating mass (ERM) haptic driver from Dialog Semiconductor. The DA7282 features LRA or ERM drive capability with automatic closed-loop LRA resonant frequency tracking, guaranteeing consistency across LRA production tolerances. It also offers wideband operation that fully utilizes the capabilities of newer wideband and multi-directional LRAs, alongside three external general-purpose inputs for triggering up to six independent haptic sequences.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HAPTIC 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HAPTIC 3 Click" changes.

Do you want to report abuse regarding "HAPTIC 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


HAPTIC 3 Click

Haptic 3 Click is a compact add-on board that uses advanced vibration patterns and waveforms to convey information to a user. This board features the DA7282, a linear resonant actuator (LRA), and an eccentric rotating mass (ERM) haptic driver from Dialog Semiconductor. The DA7282 features LRA or ERM drive capability with automatic closed-loop LRA resonant frequency tracking, guaranteeing consistency across LRA production tolerances. It also offers wideband operation that fully utilizes the capabilities of newer wideband and multi-directional LRAs, alongside three external general-purpose inputs for triggering up to six independent haptic sequences.

haptic3_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2022.
  • Type : I2C type

Software Support

We provide a library for the HAPTIC 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for HAPTIC 3 Click driver.

Standard key functions :

  • haptic3_cfg_setup Config Object Initialization function.

    void haptic3_cfg_setup ( haptic3_cfg_t *cfg );
  • haptic3_init Initialization function.

    err_t haptic3_init ( haptic3_t *ctx, haptic3_cfg_t *cfg );
  • haptic3_default_cfg Click Default Configuration function.

    err_t haptic3_default_cfg ( haptic3_t *ctx );

Example key functions :

  • haptic3_set_vibration_level This function sets the motor vibration level.

    err_t haptic3_set_vibration_level ( haptic3_t *ctx, float level );
  • haptic3_get_vibration_level This function reads the motor vibration level.

    err_t haptic3_get_vibration_level ( haptic3_t *ctx, float *level );
  • haptic3_write_register This function writes a desired data to the selected register by using I2C serial interface.

    err_t haptic3_write_register ( haptic3_t *ctx, uint8_t reg, uint8_t data_in );

Example Description

This example demonstrates the use of HAPTIC 3 Click board by controlling the attached motor vibration level.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    haptic3_cfg_t haptic3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    haptic3_cfg_setup( &haptic3_cfg );
    HAPTIC3_MAP_MIKROBUS( haptic3_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == haptic3_init( &haptic3, &haptic3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HAPTIC3_ERROR == haptic3_default_cfg ( &haptic3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Changes the motor vibration level every 2 seconds from MAX to MIN, and displays the currently set level on the USB UART.

void application_task ( void )
{
    float vibration_level;
    if ( HAPTIC3_OK == haptic3_set_vibration_level ( &haptic3, HAPTIC3_VIBRATION_LEVEL_MAX ) )
    {
        if ( HAPTIC3_OK == haptic3_get_vibration_level ( &haptic3, &vibration_level ) )
        {
            log_printf( &logger, " Vibration level: %.3f \r\n\n", vibration_level );
        }
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    if ( HAPTIC3_OK == haptic3_set_vibration_level ( &haptic3, HAPTIC3_VIBRATION_LEVEL_MIN ) )
    {
        if ( HAPTIC3_OK == haptic3_get_vibration_level ( &haptic3, &vibration_level ) )
        {
            log_printf( &logger, " Vibration level: %.3f \r\n\n", vibration_level );
        }
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HAPTIC3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

WiFi4 click - Example

2

The WiFI4 click board carries SPWF01SA intelligent Wi-Fi modules represent a plug and play and standalone 802.11 b/g/n solution for easy integration of wireless Internet connectivity The example demonstrates web server application - it reads button inputs from the development board and toggles LEDs from the web page .

[Learn More]

POT click

5

POT Click is a Click board with the accurate selectable reference voltage output. By employing a high-quality 10mm carbon potentiometer, this Click board can provide very accurate voltage output.

[Learn More]

I2C Isolator 4 Click

0

I2C Isolator 4 Click is a compact add-on board that offers completely isolated bidirectional communication. This board features the MAX14937, a two-channel, 5kVRMS I2C digital isolator from Analog Devices. The MAX14937 provides two bidirectional, open-drain channels for applications that require data to be transmitted in both directions on the same line. It supports data rates from DC up to 1.7MHz and can be used in isolated I2C busses with or without clock stretching.

[Learn More]