TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141250 times)
  2. FAT32 Library (74083 times)
  3. Network Ethernet Library (58711 times)
  4. USB Device Library (48814 times)
  5. Network WiFi Library (44523 times)
  6. FT800 Library (44072 times)
  7. GSM click (30803 times)
  8. mikroSDK (29648 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
Example

TE Connectivity Sensor Demo Example

Rating:

0

Author: MIKROE

Last Updated: 2022-02-14

Package Version: 1.0.0.0

Category: Sensors

Downloaded: 65 times

Not followed.

License: BSD 3-Clause "New" or "Revised" license  

This example demonstrates the usage of several TE connectivity sensors such as Piezo Accel Click, Ultra-Low Press Click, Temp&amp;amp;Hum14 Click boards on a Fusion for ARM v8 development system.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "TE Connectivity Sensor Demo Example" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "TE Connectivity Sensor Demo Example" changes.

Do you want to report abuse regarding "TE Connectivity Sensor Demo Example".

  • Information
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroC AI for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

Example Blog

TE Connectivity Sensor Demo app is a demonstration project of how MIKROE fully customizable development board, such as Fusion for ARM v8, can be used for evaluation or development purposes. This type of setup allows easy customization of the main microcontroller, display type, and size depending on the HMI application, as well as peripheral sensors and actuators.

Besides standardized and universal hardware connectors, MIKROE offers also standardized software packages for peripheral add-on boards. This allows users to easily switch between microcontrollers, even beyond one architecture, without any need to change the library or their projects. For example, starting a project with ARM Cortex-M0 and in 5-sec switch to Cortex-M7 MCU, or ever from ARM to PIC microcontrollers.

TE connectivity Demo Setup

TE connectivity Demo Setup

Hardware Setup

View full image

Required Hardware:

  1. Fusion for ARM v8
  2. MCU CARD for STM32 F407
  3. TFT Board 5” Resistive
  4. Piezo Accel Click – located on the mikroBUS 1
  5. Ultra-Low Press Click – located on the mikroBUS 3
  6. Temp&Hum 14 Click – located on the mikroBUS 5
 

This demonstration can be easily and quickly accessed on the remote Planet Debug via NECTO STUDIO IDE.

The demo project was written by using NECTO STUDIO IDE, mikroC AI for ARM compiler, mikroSDK 2.0, and several other MIKROE libraries. 

ALSO FROM THIS AUTHOR

Solar Energy click

4

There are many battery chargers and solar energy harvesters out there already, but the Solar energy click has the unique feature - it encompasses both of these devices in a single package.

[Learn More]

EPOS Module Click

0

EPOS Module Click is a compact add-on board that provides a low-power modem solution for use in EPOS terminals and telephone-based systems. It is based on the CMX869B, a multi-standard v.32 bis modem from CML Micro, which supports multiple communication protocols. The CMX869B has built-in functions such as DTMF encoding/decoding and a Powersave mode to optimize energy consumption. It also includes a fully isolated telephone interface via the P1200 transformer for reliable communication.

[Learn More]

IR Thermo 4 Click

0

IR Thermo 4 Click is a compact add-on board for precise remote sensing applications. This board features the TPiS 1T 1386 L5.5 H thermopile sensor from Excelitas, known for its high accuracy and narrow 5° field of view (FoV). This sensor, part of the CaliPile™ family, features factory-calibrated data stored in EEPROM, ensuring reliable and accurate performance. The sensor also comes in an isothermal TO-39 package with an integrated lens hood for minimized stray light and enhanced thermal stability, making it ideal for challenging environmental conditions. With a built-in ADC and multiple filter options, the sensor's data is easily accessible via an I2C interface. IR Thermo 4 Click is well-suited for remote skin temperature monitoring, over-temperature protection, human presence sensing, and motion detection.

[Learn More]