TOP Contributors

  1. MIKROE (2781 codes)
  2. Alcides Ramos (377 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139585 times)
  2. FAT32 Library (72044 times)
  3. Network Ethernet Library (57269 times)
  4. USB Device Library (47633 times)
  5. Network WiFi Library (43231 times)
  6. FT800 Library (42569 times)
  7. GSM click (29933 times)
  8. mikroSDK (28313 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 17 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 154 times

Not followed.

License: MIT license  

Proximity 17 Click is a compact add-on board that contains a close-range proximity sensing solution. This board features the TMD2635, a miniature proximity sensor module from ams AG. The TMD2635 features advanced proximity measurement in a tiny and thin optical land grid array module that incorporates a 940nm infrared vertical-cavity surface-emitting laser (IR VCSEL) factory calibrated for IR proximity response. It also offers advanced crosstalk noise cancellation through a wide range of offset adjustments through a digital fast-mode I2C interface to compensate for unwanted IR energy reflection at the sensor. This Click board™ is suitable for consumer and industrial applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 17 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 17 Click" changes.

Do you want to report abuse regarding "Proximity 17 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Proximity 17 Click

Proximity 17 Click is a compact add-on board that contains a close-range proximity sensing solution. This board features the TMD2635, a miniature proximity sensor module from ams AG. The TMD2635 features advanced proximity measurement in a tiny and thin optical land grid array module that incorporates a 940nm infrared vertical-cavity surface-emitting laser (IR VCSEL) factory calibrated for IR proximity response. It also offers advanced crosstalk noise cancellation through a wide range of offset adjustments through a digital fast-mode I2C interface to compensate for unwanted IR energy reflection at the sensor. This Click board™ is suitable for consumer and industrial applications.

proximity17_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2022.
  • Type : I2C type

Software Support

We provide a library for the Proximity 17 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Proximity 17 Click driver.

Standard key functions :

  • proximity17_cfg_setup Config Object Initialization function.

    void proximity17_cfg_setup ( proximity17_cfg_t *cfg );
  • proximity17_init Initialization function.

    err_t proximity17_init ( proximity17_t *ctx, proximity17_cfg_t *cfg );
  • proximity17_default_cfg Click Default Configuration function.

    err_t proximity17_default_cfg ( proximity17_t *ctx );

Example key functions :

  • proximity17_get_int_pin This function returns the INT pin logic state.

    uint8_t proximity17_get_int_pin ( proximity17_t *ctx );
  • proximity17_read_proximity This function reads the raw proximity data. The higher the value, the closer the detected object is.

    err_t proximity17_read_proximity ( proximity17_t *ctx, uint16_t *prox_data );
  • proximity17_soft_reset This function executes the defice software reset command.

    err_t proximity17_soft_reset ( proximity17_t *ctx );

Example Description

This example demonstrates the use of Proximity 17 Click board by reading and displaying the proximity data on the USB UART.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    proximity17_cfg_t proximity17_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    proximity17_cfg_setup( &proximity17_cfg );
    PROXIMITY17_MAP_MIKROBUS( proximity17_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == proximity17_init( &proximity17, &proximity17_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( PROXIMITY17_ERROR == proximity17_default_cfg ( &proximity17 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the proximity data and displays it on the USB UART approximately once per second. The higher the proximity value, the closer the detected object is.

void application_task ( void )
{
    uint16_t proximity;
    if ( PROXIMITY17_OK == proximity17_read_proximity ( &proximity17, &proximity ) )
    {
        log_printf ( &logger, " Proximity: %u\r\n\n", proximity );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity17

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

TFmini Click

0

TFmini Click is an adapter Click board™ used to interface a compatible ToF (Time of Flight) LiDAR sensor with the host MCU. This board features one four positions 1.25mm connector suitable for a TFmini LiDAR module (TFmini Plus and TFmini-S) specially made to measure an object's distance. Depending on the used LiDAR module, it is possible to achieve different measurement ranges and the use of a different serial interface, such as the UART or I2C. This Click board™ is suitable for various industrial environments like pedestrian detection, vehicle testing, and altitude.

[Learn More]

AudioMUX click

5

AudioMUX click is a sound processing Click board with digital controls, based on the TDA7468D IC.

[Learn More]

LEM click

6

LEM click carries the LTS 6-NP current transducer and MCP3201 ADC converter. The click can measure AC and DC current with exceptional speed, up to 200 KHz. LEM click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

[Learn More]