TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141815 times)
  2. FAT32 Library (74952 times)
  3. Network Ethernet Library (59306 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45102 times)
  6. FT800 Library (44669 times)
  7. GSM click (31283 times)
  8. mikroSDK (30209 times)
  9. microSD click (27657 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

3D Hall 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 383 times

Not followed.

License: MIT license  

3D Hall 10 Click is a compact add-on board used to detect the strength of a magnetic field in all three dimensions. This board features the TMAG5170, a high-precision linear 3D Hall effect sensor from Texas Instruments. The TMAG5170 features an SPI interface for configuration by MCU. The measurement data is provided in digital format of 12-bits corresponding to the magnetic field measured in each X, Y, and Z axes. It can achieve ultra-high precision at speeds up to 20kSPS for faster and more accurate real-time control and offers multiple diagnostics features to detect and report both system and device-level failures.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "3D Hall 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "3D Hall 10 Click" changes.

Do you want to report abuse regarding "3D Hall 10 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


3D Hall 10 Click

3D Hall 10 Click is a compact add-on board used to detect the strength of a magnetic field in all three dimensions. This board features the TMAG5170, a high-precision linear 3D Hall effect sensor from Texas Instruments. The TMAG5170 features an SPI interface for configuration by MCU. The measurement data is provided in digital format of 12-bits corresponding to the magnetic field measured in each X, Y, and Z axes. It can achieve ultra-high precision at speeds up to 20kSPS for faster and more accurate real-time control and offers multiple diagnostics features to detect and report both system and device-level failures.

3dhall10_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2022.
  • Type : SPI type

Software Support

We provide a library for the 3D Hall 10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for 3D Hall 10 Click driver.

Standard key functions :

  • c3dhall10_cfg_setup Config Object Initialization function.

    void c3dhall10_cfg_setup ( c3dhall10_cfg_t *cfg );
  • c3dhall10_init Initialization function.

    err_t c3dhall10_init ( c3dhall10_t *ctx, c3dhall10_cfg_t *cfg );
  • c3dhall10_default_cfg Click Default Configuration function.

    err_t c3dhall10_default_cfg ( c3dhall10_t *ctx );

Example key functions :

  • c3dhall10_get_alert_pin This function returns the alert (ALR) pin logic state. The alert pin is configured as a conversion complete interrupt by default.

    uint8_t c3dhall10_get_alert_pin ( c3dhall10_t *ctx );
  • c3dhall10_read_data This function reads new data which consists of X, Y, and Z axis values in mT, and temperature in Celsius. It also reads the angle in Degrees between X and Y by default, and magnitude data as well.

    err_t c3dhall10_read_data ( c3dhall10_t *ctx, c3dhall10_data_t *data_out );
  • c3dhall10_write_frame This function writes a desired data to the selected register by using SPI serial interface.

    err_t c3dhall10_write_frame ( c3dhall10_t *ctx, uint8_t reg_addr, uint16_t data_in );

Example Description

This example demonstrates the use of 3D Hall 10 Click board by reading the magnetic flux density from 3 axes, and the angle and magnitude between X and Y axes as well as the sensor internal temperature.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c3dhall10_cfg_t c3dhall10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    c3dhall10_cfg_setup( &c3dhall10_cfg );
    C3DHALL10_MAP_MIKROBUS( c3dhall10_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == c3dhall10_init( &c3dhall10, &c3dhall10_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( C3DHALL10_ERROR == c3dhall10_default_cfg ( &c3dhall10 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for the conversion complete interrupt and then reads the new data from the sensor approximately every 100ms and displays the measurement values on the USB UART.

void application_task ( void )
{
    while ( c3dhall10_get_alert_pin ( &c3dhall10 ) );

    c3dhall10_data_t sensor_data;
    if ( C3DHALL10_OK == c3dhall10_read_data ( &c3dhall10, &sensor_data ) )
    {
        log_printf( &logger, " X-axis: %.1f mT\r\n", sensor_data.x_axis );
        log_printf( &logger, " Y-axis: %.1f mT\r\n", sensor_data.y_axis );
        log_printf( &logger, " Z-axis: %.1f mT\r\n", sensor_data.z_axis );
        log_printf( &logger, " Angle: %.1f Degrees\r\n", sensor_data.angle );
        log_printf( &logger, " Magnitude: %u\r\n", sensor_data.magnitude );
        log_printf( &logger, " Temperature: %.2f Celsius\r\n\n", sensor_data.temperature );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.3DHall10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

SRAM 2 Click

0

SRAM 2 Click is based on ANV32A62A SRAM memory from Anvo-Systems Dresden. It's a 64Kb serial SRAM with a non-volatile SONOS storage element included with each memory cell, organized as 8k words of 8 bits each.

[Learn More]

3D HALL 5 click

5

3D HALL 5 click is a very accurate, magnetic field sensing Click board, used for sensing the magnetic field directions in all three axes. It relies on an IIS2MDCTR, a low power 3D magnetic sensor, from STMicroelectronics.

[Learn More]

BM78 Click

0

BM78 Click is a compact add-on board designed to integrate dual-mode Bluetooth wireless capability into various projects. This board features the BM78, a fully certified 2.4GHz Bluetooth (BR/EDR/LE) wireless module from Microchip. The BM78 module includes an on-board Bluetooth stack, power management subsystem, 2.4GHz transceiver, and RF power amplifier. It supports GAP, SDP, SPP, and GATT profiles, with data transfer facilitated through transparent UART mode. It features a MODE SEL switch for operational modes, a reset pin, status indicators, a software power button, and a WAKE button.

[Learn More]