TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141695 times)
  2. FAT32 Library (74761 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49225 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44528 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RS232 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: RS232

Downloaded: 264 times

Not followed.

License: MIT license  

RS232 3 Click is a compact add-on board representing a universal usable RS232 transceiver. This board features the SP3221E, a low-power RS232 transceiver from MaxLinear. The SP3221E uses an internal high-efficiency, charge-pump power supply and is compliant with EIA/TIA-232-F standards when powered by any of the mikroBUS™ power rails. The AUTO ON-LINE® feature allows the SP3221E to automatically Wake-Up from a Shutdown state when an RS232 cable is connected and a peripheral device is turned on. When not connected or not in use, the SP3221E will automatically shut down, drawing less supply current.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RS232 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RS232 3 Click" changes.

Do you want to report abuse regarding "RS232 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


RS232 3 Click

RS232 3 Click is a compact add-on board representing a universal usable RS232 transceiver. This board features the SP3221E, a low-power RS232 transceiver from MaxLinear. The SP3221E uses an internal high-efficiency, charge-pump power supply and is compliant with EIA/TIA-232-F standards when powered by any of the mikroBUS™ power rails. The AUTO ON-LINE® feature allows the SP3221E to automatically "Wake-Up" from a Shutdown state when an RS232 cable is connected and a peripheral device is turned on. When not connected or not in use, the SP3221E will automatically shut down, drawing less supply current.

rs2323_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Apr 2022.
  • Type : UART type

Software Support

We provide a library for the RS232 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for RS232 3 Click driver.

Standard key functions :

  • rs2323_cfg_setup Config Object Initialization function.

    void rs2323_cfg_setup ( rs2323_cfg_t *cfg );
  • rs2323_init Initialization function.

    err_t rs2323_init ( rs2323_t *ctx, rs2323_cfg_t *cfg );

Example key functions :

  • rs2323_generic_write This function writes a desired number of data bytes by using UART serial interface.

    err_t rs2323_generic_write ( rs2323_t *ctx, char *data_buf, uint16_t len );
  • rs2323_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t rs2323_generic_read ( rs2323_t *ctx, char *data_buf, uint16_t max_len );

Example Description

This example demonstrates the use of an RS232 3 Click board by showing the communication between the two Click board configured as a receiver and transmitter.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger and displays the selected application mode.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    rs2323_cfg_t rs2323_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    rs2323_cfg_setup( &rs2323_cfg );
    RS2323_MAP_MIKROBUS( rs2323_cfg, MIKROBUS_1 );
    if ( UART_ERROR == rs2323_init( &rs2323, &rs2323_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger, " Application Mode: Transmitter\r\n" );
#else
    log_printf( &logger, " Application Mode: Receiver\r\n" );
#endif   
    log_info( &logger, " Application Task " );
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 3 seconds.

void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
    rs2323_generic_write( &rs2323, DEMO_TEXT_MESSAGE, strlen( DEMO_TEXT_MESSAGE ) );
    log_printf( &logger, "%s", ( char * ) DEMO_TEXT_MESSAGE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 ); 
#else
    uint8_t rx_data;
    if ( rs2323_generic_read( &rs2323, &rx_data, 1 ) > 0 )
    {
        log_printf( &logger, "%c", rx_data );
    }
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RS2323

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Clock Gen Click

0

Clock Gen Click offers an ideal replacement for crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers in cost-sensitive applications. This Click features the Si5351A from Silicon Labs, an I2C configurable clock generator based on a PLL + high resolution MultiSynth fractional divider architecture which can generate any frequency up to 200 MHz on each of its outputs with 0 ppm error.

[Learn More]

H-Bridge 7 click

5

H-Bridge 7 Click features flexible motor driver IC for a wide variety of applications, labeled as the DRV8876N. This Click board integrates an N-channel H-bridge, charge pump regulator, and protection circuitry. The charge pump improves efficiency by allowing for both high-side and low-side N-channels MOSFETs and 100% duty cycle support.

[Learn More]

Rotary O click

5

Rotary O click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU.

[Learn More]