TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141228 times)
  2. FAT32 Library (74037 times)
  3. Network Ethernet Library (58659 times)
  4. USB Device Library (48766 times)
  5. Network WiFi Library (44485 times)
  6. FT800 Library (44034 times)
  7. GSM click (30784 times)
  8. mikroSDK (29602 times)
  9. PID Library (27342 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Angle 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 252 times

Not followed.

License: MIT license  

Angle 7 Click is a compact add-on board that detects the absolute angular position of a permanent magnet. This board features the AS5600, a programmable Hall-based rotary magnetic position sensor with a high-resolution 12-bit analog or PWM output from ams AG.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Angle 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Angle 7 Click" changes.

Do you want to report abuse regarding "Angle 7 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Angle 7 Click

Angle 7 Click is a compact add-on board that detects the absolute angular position of a permanent magnet. This board features the AS5600, a programmable Hall-based rotary magnetic position sensor with a high-resolution 12-bit analog or PWM output from ams AG.

angle7_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : May 2022.
  • Type : I2C type

Software Support

We provide a library for the Angle 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Angle 7 Click driver.

Standard key functions :

  • angle7_cfg_setup Config Object Initialization function.

    void angle7_cfg_setup ( angle7_cfg_t *cfg );
  • angle7_init Initialization function.

    err_t angle7_init ( angle7_t *ctx, angle7_cfg_t *cfg );
  • angle7_default_cfg Click Default Configuration function.

    err_t angle7_default_cfg ( angle7_t *ctx );

Example key functions :

  • angle7_get_status This function reads the status data.

    err_t angle7_get_status ( angle7_t *ctx, uint8_t *status );
  • angle7_get_angle This function reads the calculated angle in degrees.

    err_t angle7_get_angle ( angle7_t *ctx, float *angle );
  • angle7_get_magnitude This function reads the magnitude data.

    err_t angle7_get_magnitude ( angle7_t *ctx, uint16_t *magnitude );

Example Description

This example demonstrates the use of Angle 7 Click board by reading and displaying the magnet's angular position in degrees and analog voltage output as well as the magnet's status and magnitude.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    angle7_cfg_t angle7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    angle7_cfg_setup( &angle7_cfg );
    ANGLE7_MAP_MIKROBUS( angle7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == angle7_init( &angle7, &angle7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ANGLE7_ERROR == angle7_default_cfg ( &angle7 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the magnet's angular position in degrees and analog voltage output as well as the magnet's status and magnitude and displays the results on the USB UART approximately every 100ms.

void application_task ( void )
{
    float voltage, raw_angle, angle;
    uint16_t magnitude;
    uint8_t status;
    if ( ADC_ERROR != angle7_read_an_pin_voltage ( &angle7, &voltage ) ) 
    {
        log_printf( &logger, " AN voltage: %.3f V\r\n", voltage );
    }
    if ( ANGLE7_OK == angle7_get_angle ( &angle7, &angle ) )
    {
        log_printf ( &logger, " Angle: %.2f Degrees\r\n", angle );
    }
    if ( ANGLE7_OK == angle7_get_magnitude ( &angle7, &magnitude ) )
    {
        log_printf ( &logger, " Magnitude: %u\r\n", magnitude );
    }
    if ( ANGLE7_OK == angle7_get_status ( &angle7, &status ) )
    {
        log_printf ( &logger, " Status:" );
        if ( status & ANGLE7_STATUS_MAGNET_DETECTED )
        {
            log_printf ( &logger, " Magnet Detected \r\n Magnet Strength:" );
            if ( status & ANGLE7_STATUS_MAGNET_TOO_STRONG )
            {
                log_printf ( &logger, " Too Strong \r\n\n" );
            }
            else if ( status & ANGLE7_STATUS_MAGNET_TOO_WEAK )
            {
                log_printf ( &logger, " Too Weak \r\n\n" );
            }
            else
            {
                log_printf ( &logger, " Good \r\n\n" );
            }
        }
        else
        {
            log_printf ( &logger, " Magnet Not Detected \r\n\n" );
        }
    }
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Angle7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Remote Weather Station with ClickCloud platform

0

The most popular topic with which we all start the day is the weather. You can measure temperature, humidity, ambient lighting and UV and IR indexes in real time, easily, with our Weather Station Kit. Access this data remotely by adding our G2C click–a reliable connection to the Click Cloud platform, a cloud-based rapid prototyping environment.

[Learn More]

Color 11 Click

0

Color 11 Click is a compact add-on board that provides an accurate color-sensing solution. This board features the TCS34083M, an ALS/color sensor with selective flicker detection from ams-OSRAM. The sensor features ambient light and color (RGB) sensing and flicker detection, which suppresses cross-coupling from 940nm IR if generated by adjacent circuits. The main benefits of this sensor are invisible ALS and color sensing under any glass type, unique fast ALS integration mode, and more. It features configurable programmable gain and integration time, tailored ALS and color response, ALS/color interrupt with thresholds, and many more.

[Learn More]

Button G click

1

Button G click is the simplest solution for adding a single pushbutton to your design. The button itself is transparent, 6.8mm in diameter and has a green LED backlight. When pressed, it sends an interrupt signal to the target board microcontroller. The backlight LED is controlled separately through the mikroBUSâ„¢ PWM pin.

[Learn More]