TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141706 times)
  2. FAT32 Library (74780 times)
  3. Network Ethernet Library (59224 times)
  4. USB Device Library (49227 times)
  5. Network WiFi Library (45000 times)
  6. FT800 Library (44537 times)
  7. GSM click (31203 times)
  8. mikroSDK (30104 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Angle 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 304 times

Not followed.

License: MIT license  

Angle 7 Click is a compact add-on board that detects the absolute angular position of a permanent magnet. This board features the AS5600, a programmable Hall-based rotary magnetic position sensor with a high-resolution 12-bit analog or PWM output from ams AG.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Angle 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Angle 7 Click" changes.

Do you want to report abuse regarding "Angle 7 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Angle 7 Click

Angle 7 Click is a compact add-on board that detects the absolute angular position of a permanent magnet. This board features the AS5600, a programmable Hall-based rotary magnetic position sensor with a high-resolution 12-bit analog or PWM output from ams AG.

angle7_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : May 2022.
  • Type : I2C type

Software Support

We provide a library for the Angle 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Angle 7 Click driver.

Standard key functions :

  • angle7_cfg_setup Config Object Initialization function.

    void angle7_cfg_setup ( angle7_cfg_t *cfg );
  • angle7_init Initialization function.

    err_t angle7_init ( angle7_t *ctx, angle7_cfg_t *cfg );
  • angle7_default_cfg Click Default Configuration function.

    err_t angle7_default_cfg ( angle7_t *ctx );

Example key functions :

  • angle7_get_status This function reads the status data.

    err_t angle7_get_status ( angle7_t *ctx, uint8_t *status );
  • angle7_get_angle This function reads the calculated angle in degrees.

    err_t angle7_get_angle ( angle7_t *ctx, float *angle );
  • angle7_get_magnitude This function reads the magnitude data.

    err_t angle7_get_magnitude ( angle7_t *ctx, uint16_t *magnitude );

Example Description

This example demonstrates the use of Angle 7 Click board by reading and displaying the magnet's angular position in degrees and analog voltage output as well as the magnet's status and magnitude.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    angle7_cfg_t angle7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    angle7_cfg_setup( &angle7_cfg );
    ANGLE7_MAP_MIKROBUS( angle7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == angle7_init( &angle7, &angle7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ANGLE7_ERROR == angle7_default_cfg ( &angle7 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the magnet's angular position in degrees and analog voltage output as well as the magnet's status and magnitude and displays the results on the USB UART approximately every 100ms.

void application_task ( void )
{
    float voltage, raw_angle, angle;
    uint16_t magnitude;
    uint8_t status;
    if ( ADC_ERROR != angle7_read_an_pin_voltage ( &angle7, &voltage ) ) 
    {
        log_printf( &logger, " AN voltage: %.3f V\r\n", voltage );
    }
    if ( ANGLE7_OK == angle7_get_angle ( &angle7, &angle ) )
    {
        log_printf ( &logger, " Angle: %.2f Degrees\r\n", angle );
    }
    if ( ANGLE7_OK == angle7_get_magnitude ( &angle7, &magnitude ) )
    {
        log_printf ( &logger, " Magnitude: %u\r\n", magnitude );
    }
    if ( ANGLE7_OK == angle7_get_status ( &angle7, &status ) )
    {
        log_printf ( &logger, " Status:" );
        if ( status & ANGLE7_STATUS_MAGNET_DETECTED )
        {
            log_printf ( &logger, " Magnet Detected \r\n Magnet Strength:" );
            if ( status & ANGLE7_STATUS_MAGNET_TOO_STRONG )
            {
                log_printf ( &logger, " Too Strong \r\n\n" );
            }
            else if ( status & ANGLE7_STATUS_MAGNET_TOO_WEAK )
            {
                log_printf ( &logger, " Too Weak \r\n\n" );
            }
            else
            {
                log_printf ( &logger, " Good \r\n\n" );
            }
        }
        else
        {
            log_printf ( &logger, " Magnet Not Detected \r\n\n" );
        }
    }
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Angle7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Fingerprint 4 Click

0

Fingerprint 4 Click is an adapter Click board™ used to interface a compatible fingerprint sensor with the host MCU. This board features FINGERPRINTS BM-Lite Module, a complete biometric fingerprint solution ready to be used out-of-the-box. The BM-Lite Module combines superior biometric performance and a high standard of quality components to offer a comprehensive embedded solution for increased security and enhanced user convenience. It uses a 3D pixel sensing technology that can read virtually any finger, dry or wet, alongside simple serial commands with a configurable communication interface to enroll and verify. Its protective coating helps in protection against ESD, scratches, impact, and everyday wear and tear.

[Learn More]

BUCK Click

0

BUCK Click is a buck switching regulator that accepts a wide input voltage range of up to 40V and steps it down to 3.3V or 5V.

[Learn More]

mikromedia + for Stellaris

0

Set of examples for mikromedia + for Stellaris. Provided examples demonstrate working with mikromedia's various features and modules: Accelerometer, MMC SD card, MP3, TFT, Buzzer, nRF, Touch Panel, RTCC

[Learn More]