TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141815 times)
  2. FAT32 Library (74951 times)
  3. Network Ethernet Library (59306 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45102 times)
  6. FT800 Library (44668 times)
  7. GSM click (31280 times)
  8. mikroSDK (30209 times)
  9. microSD click (27656 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LDC Touch Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Capacitive

Downloaded: 240 times

Not followed.

License: MIT license  

LDC Touch Click is a compact add-on board optimized for inductive touch applications. This board features the LDC3114-Q1, a four-channel inductance-to-digital converter for low-power proximity and touch-button sensing from Texas Instruments. It comes with an adjustable sensitivity per input channel and operational power mode selection and measures frequency shifts caused by micro-deflection in the conductive targets formed by button presses. These presses are reported through a compatible I2C interface beside four LED indicators for its visual indication. This Click board™ enables touch button design for human-machine interface and precise linear position sensing of metal targets for automotive, consumer, and industrial applications by allowing access to the raw data representing the inductance value.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LDC Touch Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LDC Touch Click" changes.

Do you want to report abuse regarding "LDC Touch Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LDC Touch Click

LDC Touch Click is a compact add-on board optimized for inductive touch applications. This board features the LDC3114-Q1, a four-channel inductance-to-digital converter for low-power proximity and touch-button sensing from Texas Instruments. It comes with an adjustable sensitivity per input channel and operational power mode selection and measures frequency shifts caused by micro-deflection in the conductive targets formed by button presses. These presses are reported through a compatible I2C interface beside four LED indicators for its visual indication. This Click board™ enables touch button design for human-machine interface and precise linear position sensing of metal targets for automotive, consumer, and industrial applications by allowing access to the raw data representing the inductance value.

ldctouch_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : May 2022.
  • Type : I2C type

Software Support

We provide a library for the LDC Touch Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LDC Touch Click driver.

Standard key functions :

  • ldctouch_cfg_setup Config Object Initialization function.

    void ldctouch_cfg_setup ( ldctouch_cfg_t *cfg );
  • ldctouch_init Initialization function.

    err_t ldctouch_init ( ldctouch_t *ctx, ldctouch_cfg_t *cfg );
  • ldctouch_default_cfg Click Default Configuration function.

    err_t ldctouch_default_cfg ( ldctouch_t *ctx );

Example key functions :

  • ldctouch_get_int_pin This function returns the INT pin logic state.

    uint8_t ldctouch_get_int_pin ( ldctouch_t *ctx );
  • ldctouch_get_data This function reads status, out_state, and all buttons raw data.

    err_t ldctouch_get_data ( ldctouch_t *ctx, ldctouch_data_t *button_data );
  • ldctouch_set_operation_mode This function sets the operation mode.

    err_t ldctouch_set_operation_mode ( ldctouch_t *ctx, uint8_t mode );

Example Description

This example demonstrates the use of LDC Touch Click board by configuring the buttons to trigger on finger press, and reading the buttons state in the loop.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the buttons to be active on finger press.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ldctouch_cfg_t ldctouch_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ldctouch_cfg_setup( &ldctouch_cfg );
    LDCTOUCH_MAP_MIKROBUS( ldctouch_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == ldctouch_init( &ldctouch, &ldctouch_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( LDCTOUCH_ERROR == ldctouch_default_cfg ( &ldctouch ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for the button active event interrupt and then reads and displays the buttons state and their raw data on the USB UART every 200ms approximately.

void application_task ( void )
{
    static bool button_active = true;
    if ( !ldctouch_get_int_pin ( &ldctouch ) )
    {
        ldctouch_data_t button_data;
        if ( LDCTOUCH_OK == ldctouch_get_data ( &ldctouch, &button_data ) )
        {
            button_active = true;
            log_printf ( &logger, " Active button: -" ); 
            for ( uint8_t cnt = 0; cnt < 4; cnt++ )
            {
                if ( button_data.out_state & ( 1 << cnt ) )
                {
                    log_printf ( &logger, " %u - ", ( uint16_t ) cnt ); 
                }
            }
            log_printf ( &logger, "\r\n Button 0 raw data: %d\r\n", button_data.ch0_raw_button );
            log_printf ( &logger, " Button 1 raw data: %d\r\n", button_data.ch1_raw_button );
            log_printf ( &logger, " Button 2 raw data: %d\r\n", button_data.ch2_raw_button );
            log_printf ( &logger, " Button 3 raw data: %d\r\n\n", button_data.ch3_raw_button );
            Delay_ms ( 200 );
        }
    }
    else
    {
        if ( button_active )
        {
            button_active = false;
            log_printf ( &logger, " Active button: - none -\r\n" ); 
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LDCTouch

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

DIGI POT 3 click

5

DIGI POT 3 click is a versatile and feature-rich digital potentiometer click with 1024 steps and an internal non-volatile memory (EEMEM), which can be used for storing the wiper position, but also for storing various user data.

[Learn More]

I2C Isolator 5 Click

0

I2C Isolator 5 Click is a compact add-on board that offers completely isolated bidirectional communication. This board features ISO1644, a hot-swappable bidirectional I2C isolator with enhanced EMC and GPIOs from Texas Instruments. The ISO1644 provides two bidirectional channels, supporting a completely isolated I2C interface that eliminates the need for splitting I2C signals into separate transmit and receive signals for use with standalone optocouplers.

[Learn More]

Watchdog click

5

Watchdog Click is a compact add-on board that contains a simple countdown timer for a wide variety of applications. This board features the TPS3430, a standalone watchdog timer with a programmable watchdog window and programmable reset delay from Texas Instruments.

[Learn More]