TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141675 times)
  2. FAT32 Library (74724 times)
  3. Network Ethernet Library (59191 times)
  4. USB Device Library (49213 times)
  5. Network WiFi Library (44987 times)
  6. FT800 Library (44517 times)
  7. GSM click (31177 times)
  8. mikroSDK (30081 times)
  9. microSD click (27577 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 25 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 240 times

Not followed.

License: MIT license  

Thermo 25 Click is a compact add-on board that accurately measures temperature. This board features the TMP127-Q1, a high-precision digital temperature sensor from Texas Instruments. This SPI-configurable factory-calibrated temperature sensor has a high accuracy of 0.8°C, supporting an ambient temperature range from -55°C to 175°C. It features a 14-bit signed temperature resolution (0.03125 °C per LSB) while operating over a supply range.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 25 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 25 Click" changes.

Do you want to report abuse regarding "Thermo 25 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Thermo 25 Click

Thermo 25 Click is a compact add-on board that accurately measures temperature. This board features the TMP127-Q1, a high-precision digital temperature sensor from Texas Instruments. This SPI-configurable factory-calibrated temperature sensor has a high accuracy of 0.8°C, supporting an ambient temperature range from -55°C to 175°C. It features a 14-bit signed temperature resolution (0.03125 °C per LSB) while operating over a supply range.

thermo25_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2022.
  • Type : SPI type

Software Support

We provide a library for the Thermo 25 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Thermo 25 Click driver.

Standard key functions :

  • thermo25_cfg_setup Config Object Initialization function.

    void thermo25_cfg_setup ( thermo25_cfg_t *cfg );
  • thermo25_init Initialization function.

    err_t thermo25_init ( thermo25_t *ctx, thermo25_cfg_t *cfg );

Example key functions :

  • thermo25_check_communication This function sets the operating mode to shutdown, then reads and verifies the device ID, and switches back to the continuous mode.

    err_t thermo25_check_communication ( thermo25_t *ctx );
  • thermo25_read_temperature This function reads the temperature measurements in degrees Celsius.

    err_t thermo25_read_temperature ( thermo25_t *ctx, float *temperature );
  • thermo25_set_mode This function sets the device operating mode to shutdown or continuous mode by using SPI serial interface.

    err_t thermo25_set_mode ( thermo25_t *ctx, uint8_t mode );

Example Description

This example demonstrates the use of Thermo 25 Click board by reading and displaying the temperature measurements.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, and checks the communication by setting the operating mode to shutdown, reading and verifying the device ID, and switching back to the continuous mode.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    thermo25_cfg_t thermo25_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    thermo25_cfg_setup( &thermo25_cfg );
    THERMO25_MAP_MIKROBUS( thermo25_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == thermo25_init( &thermo25, &thermo25_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( THERMO25_ERROR == thermo25_check_communication ( &thermo25 ) )
    {
        log_error( &logger, " Check communication." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the temperature measurement in degrees Celsius and displays the results on the USB UART approximately once per second.

void application_task ( void )
{
    float temperature;
    if ( THERMO25_OK == thermo25_read_temperature ( &thermo25, &temperature ) )
    {
        log_printf ( &logger, " Temperature: %.2f degC\r\n\n", temperature );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo25

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Matrix G Click

0

Matrix G Click is a mikroBUS add-on board with two green 5x7 matrices driven by two MAX7219 8-bit LED Display Drivers. The active area of each matrix is 7.62mm high and 5.08 mm wide. 7x5 is a standard resolution for displaying ASCII characters, so the Click is essentially a dual-character display capable of showing letters in more readable typefaces compared to a 14-segment display. The Click communicates with the target MCU through the mikroBUS SPI interface with two separate Chip Select lines for each matrix (CSL for the left, CSR for the right). This board is designed to use a 5V power supply.

[Learn More]

Keylock click

1

Keylock click carries a processed sealed key lock mechanism that can be set in three different positions. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over the PWM, INT, and AN pin on the mikroBUSâ„¢ line.

[Learn More]

Accel 13 Click

0

Accel 13 Click features an ultra-low power triaxial accelerometer sensor with embedded intelligence, labeled as the IIS2DLPC.

[Learn More]