TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142048 times)
  2. FAT32 Library (75270 times)
  3. Network Ethernet Library (59483 times)
  4. USB Device Library (49505 times)
  5. Network WiFi Library (45278 times)
  6. FT800 Library (44902 times)
  7. GSM click (31422 times)
  8. mikroSDK (30431 times)
  9. microSD click (27789 times)
  10. PID Library (27619 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 25 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 265 times

Not followed.

License: MIT license  

Thermo 25 Click is a compact add-on board that accurately measures temperature. This board features the TMP127-Q1, a high-precision digital temperature sensor from Texas Instruments. This SPI-configurable factory-calibrated temperature sensor has a high accuracy of 0.8°C, supporting an ambient temperature range from -55°C to 175°C. It features a 14-bit signed temperature resolution (0.03125 °C per LSB) while operating over a supply range.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 25 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 25 Click" changes.

Do you want to report abuse regarding "Thermo 25 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Thermo 25 Click

Thermo 25 Click is a compact add-on board that accurately measures temperature. This board features the TMP127-Q1, a high-precision digital temperature sensor from Texas Instruments. This SPI-configurable factory-calibrated temperature sensor has a high accuracy of 0.8°C, supporting an ambient temperature range from -55°C to 175°C. It features a 14-bit signed temperature resolution (0.03125 °C per LSB) while operating over a supply range.

thermo25_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2022.
  • Type : SPI type

Software Support

We provide a library for the Thermo 25 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Thermo 25 Click driver.

Standard key functions :

  • thermo25_cfg_setup Config Object Initialization function.

    void thermo25_cfg_setup ( thermo25_cfg_t *cfg );
  • thermo25_init Initialization function.

    err_t thermo25_init ( thermo25_t *ctx, thermo25_cfg_t *cfg );

Example key functions :

  • thermo25_check_communication This function sets the operating mode to shutdown, then reads and verifies the device ID, and switches back to the continuous mode.

    err_t thermo25_check_communication ( thermo25_t *ctx );
  • thermo25_read_temperature This function reads the temperature measurements in degrees Celsius.

    err_t thermo25_read_temperature ( thermo25_t *ctx, float *temperature );
  • thermo25_set_mode This function sets the device operating mode to shutdown or continuous mode by using SPI serial interface.

    err_t thermo25_set_mode ( thermo25_t *ctx, uint8_t mode );

Example Description

This example demonstrates the use of Thermo 25 Click board by reading and displaying the temperature measurements.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, and checks the communication by setting the operating mode to shutdown, reading and verifying the device ID, and switching back to the continuous mode.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    thermo25_cfg_t thermo25_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    thermo25_cfg_setup( &thermo25_cfg );
    THERMO25_MAP_MIKROBUS( thermo25_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == thermo25_init( &thermo25, &thermo25_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( THERMO25_ERROR == thermo25_check_communication ( &thermo25 ) )
    {
        log_error( &logger, " Check communication." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the temperature measurement in degrees Celsius and displays the results on the USB UART approximately once per second.

void application_task ( void )
{
    float temperature;
    if ( THERMO25_OK == thermo25_read_temperature ( &thermo25, &temperature ) )
    {
        log_printf ( &logger, " Temperature: %.2f degC\r\n\n", temperature );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo25

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Shutter Click

0

Shutter Click is an adapter Click board™ used to implement an automated capturing feature. This Click board™ features one 3.5mm jack connector suitable for a camera connection with which the frame is captured. By combining two mikroBUS™ pins and the VO617A, a high-reliability phototransistor from Vishay Semiconductors used as a camera activation switch, activating the camera's Auto-Focus and the action of taking pictures is realized. This Click board™ allows you to expressly capture frames in a simple way for various types of photographic and security applications to capture those parts you need.

[Learn More]

Balancer 3 click

5

Balancer 3 Click is overvoltage protection device for 2-series cell lithium-ion battery packs that incorporates a high-accuracy precision overvoltage detection circuit and automatic cell imbalance correction.

[Learn More]

LTE IoT 5 Click

0

LTE IoT 5 Click is an add-on board with a compact and cost-effective secure-cloud multi-band solution designed for IoT applications. This board features the SARA-R510M8S, a cellular module that supports LTE Cat M1/Cat NB2 bands with integrated high-performance standard precision M8 GNSS receiver for global position acquisition from u-Blox. Equipped with familiar AT commands set over the UART interface, USB interface, and Network and Status indicators this low power size-optimized solution, specifically designed for IoT, also provides over-the-air firmware updates, end-to-end trusted domain security, and u-Blox’s leading GNSS technology.

[Learn More]