TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141210 times)
  2. FAT32 Library (73995 times)
  3. Network Ethernet Library (58642 times)
  4. USB Device Library (48764 times)
  5. Network WiFi Library (44458 times)
  6. FT800 Library (44033 times)
  7. GSM click (30784 times)
  8. mikroSDK (29513 times)
  9. PID Library (27339 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Color 16 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 280 times

Not followed.

License: MIT license  

Color 16 Click is a compact add-on board providing an accurate color-sensing solution. This board features ams AG’s AS7343, a 14-channel multi-purpose spectral sensor offering spectral response through a compatible I2C interface. It has a built-in aperture that controls the light entering the sensor array to increase accuracy, alongside precise optical filters integrated into standard CMOS silicon via deposited interference filter technology. The spectral response is defined by individual channels covering approximately 380nm to 1000nm with 11 channels centered in the visible spectrum, one near-infrared, and a clear channel.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Color 16 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Color 16 Click" changes.

Do you want to report abuse regarding "Color 16 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Color 16 Click

Color 16 Click is a compact add-on board providing an accurate color-sensing solution. This board features ams AG’s AS7343, a 14-channel multi-purpose spectral sensor offering spectral response through a compatible I2C interface. It has a built-in aperture that controls the light entering the sensor array to increase accuracy, alongside precise optical filters integrated into standard CMOS silicon via deposited interference filter technology. The spectral response is defined by individual channels covering approximately 380nm to 1000nm with 11 channels centered in the visible spectrum, one near-infrared, and a clear channel.

color16_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2022.
  • Type : I2C type

Software Support

We provide a library for the Color 16 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Color 16 Click driver.

Standard key functions :

  • color16_cfg_setup Config Object Initialization function.

    void color16_cfg_setup ( color16_cfg_t *cfg );
  • color16_init Initialization function.

    err_t color16_init ( color16_t *ctx, color16_cfg_t *cfg );
  • color16_default_cfg Click Default Configuration function.

    err_t color16_default_cfg ( color16_t *ctx );

Example key functions :

  • color16_read_data This function checks if the spectral measurement data is ready and then reads data from all channels along with the STATUS and ASTATUS bytes.

    err_t color16_read_data ( color16_t *ctx, color16_data_t *data_out );
  • color16_set_wait_time_ms This function sets the wait time in milliseconds by setting the WTIME register.

    err_t color16_set_wait_time_ms ( color16_t *ctx, float wait_time_ms );
  • color16_set_integration_time_ms This function sets the integration time in milliseconds by setting the ATIME and ASTEP registers.

    err_t color16_set_integration_time_ms ( color16_t *ctx, float int_time_ms );

Example Description

This example demonstrates the use of Color 16 Click by reading and displaying the values from all 14 channels.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    color16_cfg_t color16_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    color16_cfg_setup( &color16_cfg );
    COLOR16_MAP_MIKROBUS( color16_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == color16_init( &color16, &color16_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( COLOR16_ERROR == color16_default_cfg ( &color16 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for the spectral measurement complete flag and then reads data from all 14 channels in 3 cycles, and displays the results on the USB UART every 300ms approximately.

void application_task ( void )
{
    color16_data_t color_data;
    if ( COLOR16_OK == color16_read_data ( &color16, &color_data ) )
    {
        log_printf ( &logger, " STATUS:          0x%.2X\r\n", ( uint16_t ) color_data.status );
        log_printf ( &logger, " ASTATUS:         0x%.2X\r\n", ( uint16_t ) color_data.astatus );
        log_printf ( &logger, " ------- Cycle 1 -------\r\n" );
        log_printf ( &logger, " Channel FZ:      %u\r\n", color_data.ch_fz );
        log_printf ( &logger, " Channel FY:      %u\r\n", color_data.ch_fy );
        log_printf ( &logger, " Channel FXL:     %u\r\n", color_data.ch_fxl );
        log_printf ( &logger, " Channel NIR:     %u\r\n", color_data.ch_nir );
        log_printf ( &logger, " Channel 2xVIS_1: %u\r\n", color_data.ch_2x_vis_1 );
        log_printf ( &logger, " Channel FD_1:    %u\r\n", color_data.ch_fd_1 );
        log_printf ( &logger, " ------- Cycle 2 -------\r\n" );
        log_printf ( &logger, " Channel F2:      %u\r\n", color_data.ch_f2 );
        log_printf ( &logger, " Channel F3:      %u\r\n", color_data.ch_f3 );
        log_printf ( &logger, " Channel F4:      %u\r\n", color_data.ch_f4 );
        log_printf ( &logger, " Channel F6:      %u\r\n", color_data.ch_f6 );
        log_printf ( &logger, " Channel 2xVIS_2: %u\r\n", color_data.ch_2x_vis_2 );
        log_printf ( &logger, " Channel FD_2:    %u\r\n", color_data.ch_fd_2 );
        log_printf ( &logger, " ------- Cycle 3 -------\r\n" );
        log_printf ( &logger, " Channel F1:      %u\r\n", color_data.ch_f1 );
        log_printf ( &logger, " Channel F5:      %u\r\n", color_data.ch_f5 );
        log_printf ( &logger, " Channel F7:      %u\r\n", color_data.ch_f7 );
        log_printf ( &logger, " Channel F8:      %u\r\n", color_data.ch_f8 );
        log_printf ( &logger, " Channel 2xVIS_3: %u\r\n", color_data.ch_2x_vis_3 );
        log_printf ( &logger, " Channel FD_3:    %u\r\n", color_data.ch_fd_3 );
        log_printf ( &logger, " -----------------------\r\n\n" );
        Delay_ms ( 300 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Color16

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

6DOF IMU 3 Click

0

6DOF IMU 3 Click is a complete 6-axis detection development board suitable for movement and position tracking devices.

[Learn More]

XBEE Click

0

XBee Click is a compact add-on board providing wireless connectivity to end-point devices in ZigBee mesh networks. This board features the XB24CZ7PIS-004, a low-power Digi XBee® RF module delivering superior performance and interference immunity from Digi International. With its ultra-sensitive receiver, the XB24CZ7PIS-004 operates in the 2.4GHz ISM band (indoor/urban range of 60m and outdoor of 1200m), allowing the formation of robust mesh network optimized for use in the US, Canada, Europe, Australia, and Japan (worldwide acceptance). Alongside firmware updates, it supports commissioning and LED behaviors to aid device deployment and commissioning.

[Learn More]

RS485 7 Click

0

RS485 7 Click is a compact add-on board that enables communication over an RS485 network. This board features the THVD1424, a full duplex RS485 transceiver with a selectable data rate from Texas Instruments. The THVD1424 offers several pin-controlled features, including an on-chip 120Ω termination resistor, slew rate control, and the ability to switch between half and full duplex mode. With its high immunity to IEC Contact Discharge ESD events, the bus pins require no additional system-level protection components. Additionally, the chip is known for its low power consumption and glitch-free power-up/power-down functionality, which enables hot plug-in capability.

[Learn More]