TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136726 times)
  2. FAT32 Library (69942 times)
  3. Network Ethernet Library (55940 times)
  4. USB Device Library (46265 times)
  5. Network WiFi Library (41886 times)
  6. FT800 Library (41169 times)
  7. GSM click (28982 times)
  8. PID Library (26412 times)
  9. mikroSDK (26358 times)
  10. microSD click (25366 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 9 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 44 times

Not followed.

License: MIT license  

Stepper 9 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S581FNG, a two-phase bipolar stepping motor driver from Toshiba Semiconductor. Fabricated with the BiCD process, it supports a PWM constant-current control drive and steps resolution from full to 1/32 for less motor noise and smoother control. It has a wide operating voltage range of 8.2V to 44V with a maximum output current capacity of 2A, decay modes selection function, protection, and several anomaly detection indicators.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 9 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 9 click" changes.

Do you want to report abuse regarding "Stepper 9 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Stepper 9 click

Stepper 9 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S581FNG, a two-phase bipolar stepping motor driver from Toshiba Semiconductor. Fabricated with the BiCD process, it supports a PWM constant-current control drive and steps resolution from full to 1/32 for less motor noise and smoother control. It has a wide operating voltage range of 8.2V to 44V with a maximum output current capacity of 2A, decay modes selection function, protection, and several anomaly detection indicators.

stepper9_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2022.
  • Type : I2C type

Software Support

We provide a library for the Stepper 9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 9 Click driver.

Standard key functions :

  • stepper9_cfg_setup Config Object Initialization function.

    void stepper9_cfg_setup ( stepper9_cfg_t *cfg );
  • stepper9_init Initialization function.

    err_t stepper9_init ( stepper9_t *ctx, stepper9_cfg_t *cfg );
  • stepper9_default_cfg Click Default Configuration function.

    err_t stepper9_default_cfg ( stepper9_t *ctx );

Example key functions :

  • stepper9_set_direction This function sets the motor direction by setting the DIR pin logic state.

    void stepper9_set_direction ( stepper9_t *ctx, uint8_t dir );
  • stepper9_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void stepper9_drive_motor ( stepper9_t *ctx, uint32_t steps, uint8_t speed );
  • stepper9_set_step_mode This function sets the step mode resolution settings.

    err_t stepper9_set_step_mode ( stepper9_t *ctx, uint8_t mode );

Example Description

This example demonstrates the use of the Stepper 9 click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper9_cfg_t stepper9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper9_cfg_setup( &stepper9_cfg );
    STEPPER9_MAP_MIKROBUS( stepper9_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == stepper9_init( &stepper9, &stepper9_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( STEPPER9_ERROR == stepper9_default_cfg ( &stepper9 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockiwse for 400 quarter steps with 2 seconds delay before changing the direction. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise \r\n\n" );
    stepper9_set_step_mode ( &stepper9, STEPPER9_MODE_FULL_STEP );
    stepper9_set_direction ( &stepper9, STEPPER9_DIR_CW );
    stepper9_drive_motor ( &stepper9, 200, STEPPER9_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 quarter steps counter-clockwise \r\n\n" );
    stepper9_set_step_mode ( &stepper9, STEPPER9_MODE_QUARTER_STEP );
    stepper9_set_direction ( &stepper9, STEPPER9_DIR_CCW );
    stepper9_drive_motor ( &stepper9, 400, STEPPER9_SPEED_VERY_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper9

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Thermo 22 click

0

Thermo 22 Click is a compact add-on board that provides an accurate temperature measurement. This board features the TMP75C, a high-precision digital temperature sensor from Texas Instruments. The TMP75C houses an integrated digital temperature sensor with a 12-bit analog-to-digital converter (ADC), a reference circuit, and serial interface logic functions in one package. Characterized by its high accuracy (up to ±0.25°C typical) and high resolution of 0.0625°C, this temperature sensor provides temperature data to the host controller with a configurable I2C interface. This Click board™ is appropriate for thermal management and protection of various consumer, industrial, and environmental applications.

[Learn More]

Thermo 9 click

0

The TSYS01 is a single chip, versatile, new technology temperature sensor. The TSYS01 provides factory calibrated temperature information. It includes a temperature sensing chip and a 24 bit Σ-ADC.

[Learn More]

9DOF 3 click

0

9DOF 3 Click introduces the BMX055, a small-scale absolute orientation sensor in the class of low-noise 9-axis measurement units, from Bosch Sensortec. It comprises the full functionality of a triaxial, low-g acceleration sensor, a triaxial angular rate sensor and a triaxial geomagnetic sensor. All three sensor components of the BMX055 can be operated and addressed independently from each other. On top, the BMX055 integrates a multitude of features that facilitate its use especially in the area of motion detection applications, such as device orientation measurement, gaming, HMI or menu browser control. 9DOF 3 Click offers both SPI and I2C digital interfaces for easy and fast system integration.

[Learn More]