TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71750 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28077 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 12 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 163 times

Not followed.

License: MIT license  

DC Motor 12 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9054FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9054FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 12 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 12 Click" changes.

Do you want to report abuse regarding "DC Motor 12 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DC Motor 12 Click

DC Motor 12 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9054FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9054FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

dcmotor12_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2022.
  • Type : SPI type

Software Support

We provide a library for the DC Motor 12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DC Motor 12 Click driver.

Standard key functions :

  • dcmotor12_cfg_setup Config Object Initialization function.

    void dcmotor12_cfg_setup ( dcmotor12_cfg_t *cfg );
  • dcmotor12_init Initialization function.

    err_t dcmotor12_init ( dcmotor12_t *ctx, dcmotor12_cfg_t *cfg );
  • dcmotor12_default_cfg Click Default Configuration function.

    err_t dcmotor12_default_cfg ( dcmotor12_t *ctx );

Example key functions :

  • dcmotor12_get_motor_current DC Motor 12 get motor current function.

    err_t dcmotor12_get_motor_current ( dcmotor12_t *ctx, float *current );
  • dcmotor12_set_ch1_operation_mode DC Motor 12 set ch1 operation mode function.

    err_t dcmotor12_set_ch1_operation_mode ( dcmotor12_t *ctx, uint8_t mode );
  • dcmotor12_set_cm_sel_pin DC Motor 12 set cm sel pin function.

    err_t dcmotor12_set_cm_sel_pin ( dcmotor12_t *ctx, uint8_t state );

Example Description

This example demonstrates the use of DC Motor 12 Click board by controlling the speed of DC motor over PWM duty cycle as well as displaying the motor current consumption.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    dcmotor12_cfg_t dcmotor12_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dcmotor12_cfg_setup( &dcmotor12_cfg );
    DCMOTOR12_MAP_MIKROBUS( dcmotor12_cfg, MIKROBUS_1 );
    if ( DCMOTOR12_OK != dcmotor12_init( &dcmotor12, &dcmotor12_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( DCMOTOR12_OK != dcmotor12_default_cfg ( &dcmotor12 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Changes the operation mode and motor speed by setting the PWM duty cycle and then calculates the motor current consumption for that speed. All data is being logged on the USB UART where you can track changes.

void application_task ( void )
{
    if ( DCMOTOR12_OK == dcmotor12_set_ch1_operation_mode ( &dcmotor12, DCMOTOR12_MODE_OUTPUT_OFF ) )
    {
        log_printf ( &logger, " MODE: OFF\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    if ( DCMOTOR12_OK == dcmotor12_set_ch1_operation_mode ( &dcmotor12, DCMOTOR12_MODE_FORWARD ) )
    {
        dcmotor12_set_cm_sel_pin ( &dcmotor12, DCMOTOR12_PIN_LOW_LEVEL );
        for ( uint16_t duty = 0; duty <= DCMOTOR12_CONFIG56_DUTY_PERIOD_MAX; duty += 100 )
        {
            float current;
            log_printf ( &logger, " MODE: FORWARD\r\n" );
            if ( DCMOTOR12_OK == dcmotor12_set_ch1_duty_period ( &dcmotor12, duty ) )
            {
                log_printf ( &logger, " Duty: %u\r\n", duty );
            }
            if ( DCMOTOR12_OK == dcmotor12_get_motor_current ( &dcmotor12, &current ) )
            {
                log_printf ( &logger, " Current: %.3f A\r\n\n", current );
            }
            Delay_ms ( 500 );
        }
    }
    if ( DCMOTOR12_OK == dcmotor12_set_ch1_operation_mode ( &dcmotor12, DCMOTOR12_MODE_BRAKE ) )
    {
        log_printf ( &logger, " MODE: BRAKE\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    if ( DCMOTOR12_OK == dcmotor12_set_ch1_operation_mode ( &dcmotor12, DCMOTOR12_MODE_REVERSE ) )
    {
        dcmotor12_set_cm_sel_pin ( &dcmotor12, DCMOTOR12_PIN_HIGH_LEVEL );
        for ( uint16_t duty = 0; duty <= DCMOTOR12_CONFIG56_DUTY_PERIOD_MAX; duty += 100 )
        {
            float current;
            log_printf ( &logger, " MODE: REVERSE\r\n" );
            if ( DCMOTOR12_OK == dcmotor12_set_ch1_duty_period ( &dcmotor12, duty ) )
            {
                log_printf ( &logger, " Duty: %u\r\n", duty );
            }
            if ( DCMOTOR12_OK == dcmotor12_get_motor_current ( &dcmotor12, &current ) )
            {
                log_printf ( &logger, " Current: %.3f A\r\n\n", current );
            }
            Delay_ms ( 500 );
        }
    }
}

Note

The Click board swiches should be set as follows: SW 1-2-3-4 : H-H-L-L This sets the Click board as a SPI controlled single-channel device so the motor should be connected to OUT1/2 and OUT3/4.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DCMotor12

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Thermo 19 click

5

Thermo 19 Click is a compact add-on board that provides an accurate temperature measurement. This board features the MAX31825, a temperature sensor that provides 8-bit to 12-bit Celsius temperature measurements with better than ±1.75°C from -45°C to +145°C.

[Learn More]

Click examples - Raspberry Pi 3

0

By adding two mikroBUS sockets to your Raspberry Pi 3, the Pi 3 click shield allows you to experiment with hundreds of click board from our ever expanding range. WiFi, Lora, Bluetooth, GSM, GPS, RFID, OLED, speech recognition, environmental sensors, movement sensors, biosensors, LEDs, relays, — you name it, we got it!

[Learn More]

GNSS RTK 2 Click

0

GNSS RTK 2 Click is a compact add-on board used to enhance the precision of position data derived from satellite-based positioning systems. This board features the ZED-F9R, a multi-band professional-grade GNSS module with integrated multi-band Real Time Kinematics (RTK) technology offering centimeter-level accuracy from u-blox. This module concurrently uses GNSS signals from all four GNSS constellations (GPS/QZSS, GLONASS, Galileo, and BeiDou) and provides a reliable multi-band RTK turnkey solution with up to 30Hz real-time position update rate and full GNSS carrier raw data.

[Learn More]