TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141112 times)
  2. FAT32 Library (73904 times)
  3. Network Ethernet Library (58554 times)
  4. USB Device Library (48724 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43977 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27304 times)
  10. microSD click (27126 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 28 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 158 times

Not followed.

License: MIT license  

Thermo 28 Click is a compact add-on board that accurately measures temperature. This board features the ams AG’s AS6221, a high-accuracy digital temperature sensor. The AS6221 consists of a Si bandgap temperature factory-calibrated sensor, 16-bit ADC, and a digital signal processor, offering a high accuracy of ±0.9°C. It provides temperature data to the host controller through a compatible I2C interface, reliability, user-selectable I2C addresses, and alert functionality, which triggers an interrupt to protect the device from excessive temperatures.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 28 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 28 Click" changes.

Do you want to report abuse regarding "Thermo 28 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Thermo 28 Click

Thermo 28 Click is a compact add-on board that accurately measures temperature. This board features the ams AG’s AS6221, a high-accuracy digital temperature sensor. The AS6221 consists of a Si bandgap temperature factory-calibrated sensor, 16-bit ADC, and a digital signal processor, offering a high accuracy of ±0.9°C. It provides temperature data to the host controller through a compatible I2C interface, reliability, user-selectable I2C addresses, and alert functionality, which triggers an interrupt to protect the device from excessive temperatures.

thermo28_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2022.
  • Type : I2C type

Software Support

We provide a library for the Thermo 28 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Thermo 28 Click driver.

Standard key functions :

  • thermo28_cfg_setup Config Object Initialization function.

    void thermo28_cfg_setup ( thermo28_cfg_t *cfg );
  • thermo28_init Initialization function.

    err_t thermo28_init ( thermo28_t *ctx, thermo28_cfg_t *cfg );
  • thermo28_default_cfg Click Default Configuration function.

    err_t thermo28_default_cfg ( thermo28_t *ctx );

Example key functions :

  • thermo28_get_temperature Thermo 28 get temperature function.

    err_t thermo28_get_temperature ( thermo28_t *ctx, float *temperature );
  • thermo28_set_config Thermo 28 set configuration function.

    err_t thermo28_set_config ( thermo28_t *ctx, thermo28_config_t config );
  • thermo28_set_continuous_conversion Thermo 28 set continuous conversion function.

    err_t thermo28_set_continuous_conversion ( thermo28_t *ctx );

Example Description

This example demonstrates the use of Thermo 28 Click board™ by reading and displaying the temperature measurements.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    thermo28_cfg_t thermo28_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    thermo28_cfg_setup( &thermo28_cfg );
    THERMO28_MAP_MIKROBUS( thermo28_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == thermo28_init( &thermo28, &thermo28_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    if ( THERMO28_ERROR == thermo28_default_cfg ( &thermo28 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

Application Task

This is an example that shows the use of a Thermo 28 Click board™. Reads the temperature measurement in degree Celsius and displays the results. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) 
{
    float temperature;

    if ( THERMO28_OK == thermo28_get_temperature( &thermo28, &temperature ) )
    {
        log_printf( &logger, " Temperature [degC]: %.2f \r\n", temperature );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo28

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

RTC Demo

0

The application demonstrates RTC SDK functionality.

[Learn More]

DAC 16 Click

0

DAC 16 Click is a compact add-on board, a digital-to-analog converter (DAC) designed for precise voltage and current output applications. This board features the DAC63204-Q1, an automotive-qualified 12-bit DAC from Texas Instruments. This Click board™ features four output channels with flexible configuration options, including adjustable voltage gains and selectable current ranges from ±25μA to ±250μA. It also supports both internal and external voltage references and offers a Hi-Z power-down mode for enhanced protection. Communication with the host MCU is enabled through either a 4-wire SPI or I2C interface, with configurable I2C addresses and a general-purpose I/O pin for additional functionality.

[Learn More]

Angle 8 Click

0

Angle 8 Click is a compact add-on board that detects the absolute angular position of a permanent magnet. This board features the MA782GGU, a low-power angle sensor with integrated wake-up angle detection from Monolithic Power Systems. With its power cycling ability, the MA782GGU can be optimized for applications that require low average power. It supports a wide range of magnetic field strengths and spatial configurations, with both end-of-shaft and off-axis (side-shaft mounting), supported configurations. Fast data acquisition and processing provides accurate angle measurement at an applied magnetic field of 60mT, alongside magnetic field strength detection with programmable thresholds. This Click board™ is suitable for general-purpose angle measurements, in embedded motion control applications, as a power/speed control trigger solution, and more.

[Learn More]