TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139250 times)
  2. FAT32 Library (71746 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28074 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 24 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 122 times

Not followed.

License: MIT license  

Brushless 24 Click is a compact add-on board that controls brushless DC (BLDC) motors with any MCU. This board features the DRV10866, a 3- phase sensorless motor driver from Texas Instruments with integrated power MOSFETs with current drive capability up to 800mA peak. The DRV10866 implements a 150° commutation (sensorless BEMF control scheme) for a 3-phase motor alongside a synchronous rectification mode of operation that achieves increased efficiency for motor driver applications. Besides choosing the motor speed and a wide operating voltage range of up to 5V, it also has several built-in protection circuits, such as undervoltage, lock detection, voltage surge protection, and overtemperature.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 24 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 24 Click" changes.

Do you want to report abuse regarding "Brushless 24 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 24 Click

Brushless 24 Click is a compact add-on board that controls brushless DC (BLDC) motors with any MCU. This board features the DRV10866, a 3- phase sensorless motor driver from Texas Instruments with integrated power MOSFETs with current drive capability up to 800mA peak. The DRV10866 implements a 150° commutation (sensorless BEMF control scheme) for a 3-phase motor alongside a synchronous rectification mode of operation that achieves increased efficiency for motor driver applications. Besides choosing the motor speed and a wide operating voltage range of up to 5V, it also has several built-in protection circuits, such as undervoltage, lock detection, voltage surge protection, and overtemperature.

brushless24_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Nov 2022.
  • Type : PWM type

Software Support

We provide a library for the Brushless 24 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 24 Click driver.

Standard key functions :

  • brushless24_cfg_setup Config Object Initialization function.

    void brushless24_cfg_setup ( brushless24_cfg_t *cfg );
  • brushless24_init Initialization function.

    err_t brushless24_init ( brushless24_t *ctx, brushless24_cfg_t *cfg );
  • brushless24_default_cfg Click Default Configuration function.

    err_t brushless24_default_cfg ( brushless24_t *ctx );

Example key functions :

  • brushless24_set_duty_cycle Brushless 24 sets PWM duty cycle.

    err_t brushless24_set_duty_cycle ( brushless24_t *ctx, float duty_cycle );
  • brushless24_pwm_start Brushless 24 start PWM module.

    err_t brushless24_pwm_start ( brushless24_t *ctx );
  • brushless24_get_int_state Brushless 24 get INT pin state.

    uint8_t brushless24_get_int_state ( brushless24_t *ctx );

Example Description

This application is a schowcase of controlling speed of brushless motor using Brushless 24 Click.

The demo application is composed of two sections :

Application Init

Initialization of LOG, PWM module and additional pins.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless24_cfg_t brushless24_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless24_cfg_setup( &brushless24_cfg );
    BRUSHLESS24_MAP_MIKROBUS( brushless24_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == brushless24_init( &brushless24, &brushless24_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS24_ERROR == brushless24_default_cfg ( &brushless24 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

In a span of second changes duty cycle from 0 to 100% which is changing speed of the motor.

void application_task ( void ) 
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    brushless24_set_duty_cycle ( &brushless24, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 1000 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless24

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Thingstream Click

0

Thingstream Click is an IoT gateway Click board™ with the Thingstream client SDK preinstalled.

[Learn More]

TFmini Click

0

TFmini Click is an adapter Click board™ used to interface a compatible ToF (Time of Flight) LiDAR sensor with the host MCU. This board features one four positions 1.25mm connector suitable for a TFmini LiDAR module (TFmini Plus and TFmini-S) specially made to measure an object's distance. Depending on the used LiDAR module, it is possible to achieve different measurement ranges and the use of a different serial interface, such as the UART or I2C. This Click board™ is suitable for various industrial environments like pedestrian detection, vehicle testing, and altitude.

[Learn More]

Gyro click

0

This example demonstrates reading from Gyro click sensor (L3GD20) angular rate and then converting data to angular displacement by integration. Data is send via UART to PC terminal application.

[Learn More]