TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (386 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139928 times)
  2. FAT32 Library (72271 times)
  3. Network Ethernet Library (57455 times)
  4. USB Device Library (47768 times)
  5. Network WiFi Library (43396 times)
  6. FT800 Library (42721 times)
  7. GSM click (29985 times)
  8. mikroSDK (28506 times)
  9. PID Library (27001 times)
  10. microSD click (26407 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

eFuse 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Power Switch

Downloaded: 81 times

Not followed.

License: MIT license  

eFuse 4 Click is a compact add-on board with a power path protection solution that limits circuit currents and voltages to safe levels during fault conditions. This board features the TPS25940, an eFuse power switch with reverse current blocking from Texas Instruments. The TPS25940 features a full suite of protection and monitoring functions, including a DevSleep™ mode that supports compliance with the SATA™ Device Sleep standard. The wide operating range from 2.7V to 18V allows control of many popular DC bus voltages. The additional potentiometer sets the overload and short-circuit current limit of the TPS25940, while the additional header allows external current monitoring.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "eFuse 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "eFuse 4 Click" changes.

Do you want to report abuse regarding "eFuse 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


eFuse 4 Click

eFuse 4 Click is a compact add-on board with a power path protection solution that limits circuit currents and voltages to safe levels during fault conditions. This board features the TPS25940, an eFuse power switch with reverse current blocking from Texas Instruments. The TPS25940 features a full suite of protection and monitoring functions, including a DevSleep™ mode that supports compliance with the SATA™ Device Sleep standard. The wide operating range from 2.7V to 18V allows control of many popular DC bus voltages. The additional potentiometer sets the overload and short-circuit current limit of the TPS25940, while the additional header allows external current monitoring.

efuse4_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2022.
  • Type : I2C type

Software Support

We provide a library for the eFuse 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for eFuse 4 Click driver.

Standard key functions :

  • efuse4_cfg_setup Config Object Initialization function.

    void efuse4_cfg_setup ( efuse4_cfg_t *cfg );
  • efuse4_init Initialization function.

    err_t efuse4_init ( efuse4_t *ctx, efuse4_cfg_t *cfg );
  • efuse4_default_cfg Click Default Configuration function.

    err_t efuse4_default_cfg ( efuse4_t *ctx );

Example key functions :

  • efuse4_set_current_limit eFuse 4 set current limit function.

    err_t efuse4_set_current_limit ( efuse4_t *ctx, efuse4_current_limit_t current_limit )
  • efuse4_set_resistance eFuse 4 set resistance function.

    err_t efuse4_set_resistance ( efuse4_t *ctx, uint32_t res_ohm );
  • efuse4_set_digi_pot eFuse 4 set normal mode function.

    void efuse4_set_normal_mode ( efuse4_t *ctx );

Example Description

This library contains API for the eFuse 4 Click driver. This driver provides the functions to set the current limiting conditions in order to provide the threshold of the fault conditions.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization, default settings turn on the device.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    efuse4_cfg_t efuse4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    efuse4_cfg_setup( &efuse4_cfg );
    EFUSE4_MAP_MIKROBUS( efuse4_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == efuse4_init( &efuse4, &efuse4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( EFUSE4_ERROR == efuse4_default_cfg ( &efuse4 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------------\r\n" );
    Delay_ms ( 100 );

    display_selection( );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the eFuse 4 Click board™. Reading user's input from UART Terminal and using it as an index for an array of pre-calculated values that define the current limit level. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{  
    static char index;

    if ( EFUSE4_ERROR != log_read( &logger, &index, 1 ) ) 
    {
        if ( ( index >= '0' ) && ( index <= '6' ) ) 
        {
            efuse4_set_current_limit ( &efuse4, limit_value_op[ index - 48 ] );
            log_printf( &logger, "  >>> Selected mode %d     \r\n", index - 48 );
            log_printf( &logger, "  Current limit is %d mA   \r\n", limit_value_op[ index - 48 ] );
            log_printf( &logger, "---------------------------\r\n" );
            Delay_ms ( 100 );
        }
        else 
        { 
            log_printf( &logger, "    Data not in range!    \r\n" );
            log_printf( &logger, "---------------------------\r\n" );
            display_selection( );
            Delay_ms ( 100 );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.eFuse4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Opto Encoder 3 Click

0

Opto Encoder 3 Click is a linear incremental optical sensor/encoder Click, which can be used for the movement or rotation encoding.

[Learn More]

BLE 12 Click

0

BLE 12 Click is a compact add-on board that provides BT/BLE connectivity for any embedded application. This board features the BM832A, a powerful and highly flexible, ultra low power Bluetooth Low Energy (BLE) module from Fanstel. Based on the Nordic nRF52 SoC, the BM832A supports Bluetooth 5.0 Low-Energy (BLE) connectivity while delivering RF range and performance, debugging and enhanced security features, and low power consumption. It also comes with an ARM Cortex™ M4(F) MCU up to 192kB flash and 24kB RAM, embedded 2.4GHz multi-protocol transceiver, and an integrated PCB trace antenna. This Click board™ is suitable for low-cost Bluetooth low energy applications such as building automation and sensor networks, portable medical, connected home, and more.

[Learn More]

Mikromedia 5 for PIC32MZ Capacitive

0

This project contains demo example for Mikromedia 5 for PIC32MZ Capacitive.

[Learn More]