We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.7
mikroSDK Library: 2.0.0.0
Category: Brushed
Downloaded: 100 times
Not followed.
License: MIT license
DC Motor 23 Click is a compact add-on board with a brushed DC motor driver. This board features the TB67H480FNG, a dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. Fabricated with the BiCD process (DMOSFET is used for output power transistor), it covers a wide operating voltage range of 8.2V to 44V with a maximum output current capacity of 2A. It also offers many helpful features that support a robust and reliable operation, like the decay modes selection function, several protection features, and one anomaly detection indicator.
Do you want to subscribe in order to receive notifications regarding "DC Motor 23 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 23 Click" changes.
Do you want to report abuse regarding "DC Motor 23 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5131_dc_motor_23_clic.zip [622.07KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
DC Motor 23 Click is a compact add-on board with a brushed DC motor driver. This board features the TB67H480FNG, a dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. Fabricated with the BiCD process (DMOSFET is used for output power transistor), it covers a wide operating voltage range of 8.2V to 44V with a maximum output current capacity of 2A. It also offers many helpful features that support a robust and reliable operation, like the decay modes selection function, several protection features, and one anomaly detection indicator.
We provide a library for the DC Motor 23 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for DC Motor 23 Click driver.
dcmotor23_cfg_setup
Config Object Initialization function.
void dcmotor23_cfg_setup ( dcmotor23_cfg_t *cfg );
dcmotor23_init
Initialization function.
err_t dcmotor23_init ( dcmotor23_t *ctx, dcmotor23_cfg_t *cfg );
dcmotor23_default_cfg
Click Default Configuration function.
err_t dcmotor23_default_cfg ( dcmotor23_t *ctx );
dcmotor23_set_clockwise
DC Motor 23 set clockwise function.
err_t dcmotor23_set_clockwise ( dcmotor23_t *ctx, uint8_t sel_motor );
dcmotor23_set_counter_clockwise
DC Motor 23 set counter clockwise function.
err_t dcmotor23_set_counter_clockwise ( dcmotor23_t *ctx, uint8_t sel_motor );
dcmotor23_set_decay
DC Motor 23 set decay function.
err_t dcmotor23_set_decay ( dcmotor23_t *ctx, uint8_t sel_motor );
This example demonstrates the use of DC Motor 23 Click board™. by driving the motors in both direction every 3 seconds.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration which sets the output torque to 100%.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
dcmotor23_cfg_t dcmotor23_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
dcmotor23_cfg_setup( &dcmotor23_cfg );
DCMOTOR23_MAP_MIKROBUS( dcmotor23_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == dcmotor23_init( &dcmotor23, &dcmotor23_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( DCMOTOR23_ERROR == dcmotor23_default_cfg ( &dcmotor23 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
log_printf ( &logger, "--------------------------\r\n" );
}
This example demonstrates the use of the DC Motor 23 Click board™. Drives the motors in the clockwise direction, after that decay the motors with a 3 seconds delay then switches to the counter-clockwise direction, and decay the motors with a 3 seconds delay. Results are being sent to the UART Terminal, where you can track their changes.
void application_task ( void )
{
if ( DCMOTOR23_OK == dcmotor23_set_clockwise( &dcmotor23, DCMOTOR23_SEL_OUT_A ) )
{
log_printf ( &logger, " OUTA: Clockwise\r\n" );
}
if ( DCMOTOR23_OK == dcmotor23_set_clockwise( &dcmotor23, DCMOTOR23_SEL_OUT_B ) )
{
log_printf ( &logger, " OUTB: Clockwise\r\n\n" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( DCMOTOR23_OK == dcmotor23_set_decay( &dcmotor23, DCMOTOR23_SEL_OUT_A ) )
{
log_printf ( &logger, " OUTA: Decay\r\n" );
}
if ( DCMOTOR23_OK == dcmotor23_set_decay( &dcmotor23, DCMOTOR23_SEL_OUT_B ) )
{
log_printf ( &logger, " OUTB: Decay\r\n\n" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( DCMOTOR23_OK == dcmotor23_set_counter_clockwise( &dcmotor23, DCMOTOR23_SEL_OUT_A ) )
{
log_printf ( &logger, " OUTA: Counter-Clockwise\r\n" );
}
if ( DCMOTOR23_OK == dcmotor23_set_counter_clockwise( &dcmotor23, DCMOTOR23_SEL_OUT_B ) )
{
log_printf ( &logger, " OUTB: Counter-Clockwise\r\n\n" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( DCMOTOR23_OK == dcmotor23_set_decay( &dcmotor23, DCMOTOR23_SEL_OUT_A ) )
{
log_printf ( &logger, " OUTA: Decay\r\n" );
}
if ( DCMOTOR23_OK == dcmotor23_set_decay( &dcmotor23, DCMOTOR23_SEL_OUT_B ) )
{
log_printf ( &logger, " OUTB: Decay\r\n\n" );
}
log_printf ( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.