TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (396 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (127 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140717 times)
  2. FAT32 Library (73186 times)
  3. Network Ethernet Library (58132 times)
  4. USB Device Library (48290 times)
  5. Network WiFi Library (43927 times)
  6. FT800 Library (43416 times)
  7. GSM click (30419 times)
  8. mikroSDK (29118 times)
  9. PID Library (27132 times)
  10. microSD click (26779 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

6DOF IMU 18 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 118 times

Not followed.

License: MIT license  

6DOF IMU 18 Click is a compact add-on board with a 6-axis inertial measurement unit. This board features the ICM-42605, a high-performance 6-axis MotionTracking™ IMU from TDK InvenSense.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "6DOF IMU 18 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 18 Click" changes.

Do you want to report abuse regarding "6DOF IMU 18 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


6DOF IMU 18 Click

6DOF IMU 18 Click is a compact add-on board with a 6-axis inertial measurement unit. This board features the ICM-42605, a high-performance 6-axis MotionTracking™ IMU from TDK InvenSense.

6dofimu18_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jan 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the 6DOF IMU 18 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for 6DOF IMU 18 Click driver.

Standard key functions :

  • c6dofimu18_cfg_setup Config Object Initialization function.

    void c6dofimu18_cfg_setup ( c6dofimu18_cfg_t *cfg );
  • c6dofimu18_init Initialization function.

    err_t c6dofimu18_init ( c6dofimu18_t *ctx, c6dofimu18_cfg_t *cfg );
  • c6dofimu18_default_cfg Click Default Configuration function.

    err_t c6dofimu18_default_cfg ( c6dofimu18_t *ctx );

Example key functions :

  • c6dofimu18_set_reg_bank 6DOF IMU 18 set register bank function.

    err_t c6dofimu18_set_reg_bank( c6dofimu18_t *ctx, uint8_t bank );
  • c6dofimu18_get_int1_state 6DOF IMU 18 read INT1 pin state function.

    uint8_t c6dofimu18_get_int1_state ( c6dofimu18_t *ctx );
  • c6dofimu18_get_data_from_register 6DOF IMU 18 read data function.

    err_t c6dofimu18_get_data_from_register ( c6dofimu18_t *ctx, float *temperature_data, c6dofimu18_data_t *accel_data, c6dofimu18_data_t *gyro_data, uint32_t *tmst_data );

Example Description

This library contains API for 6DOF IMU 18 Click driver. The library initializes and defines the I2C and SPI bus drivers to write and read data from registers, as well as the default configuration for reading gyroscope and accelerator data, and temperature.

The demo application is composed of two sections :

Application Init

Initializes the driver after that resets the device and performs default configuration and reads the device id.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c6dofimu18_cfg_t c6dofimu18_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    c6dofimu18_cfg_setup( &c6dofimu18_cfg );
    C6DOFIMU18_MAP_MIKROBUS( c6dofimu18_cfg, MIKROBUS_1 );
    err_t init_flag = c6dofimu18_init( &c6dofimu18, &c6dofimu18_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    uint8_t id = 0;
    c6dofimu18_reg_read( &c6dofimu18, C6DOFIMU18_BANK0_SEL, C6DOFIMU18_REG_WHO_AM_I, &id, 1);
    log_printf( &logger, " Device ID : 0x%.2X \r\n", ( uint16_t ) id );
    if ( C6DOFIMU18_WHO_AM_I_VALUE != id )
    {
        log_error( &logger, " Communication error." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    if ( C6DOFIMU18_OK != c6dofimu18_default_cfg ( &c6dofimu18 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the 6DOF IMU 18 Click board by measuring and displaying acceleration and gyroscope data for X-axis, Y-axis, and Z-axis as well as temperature in degrees Celsius.

void application_task ( void )
{
    if ( c6dofimu18_get_int1_state( &c6dofimu18) )
    {       
        c6dofimu18_data_t accel_data;
        c6dofimu18_data_t gyro_data;
        float temp_data;
        uint32_t tmst_data;

        c6dofimu18_get_data_from_register( &c6dofimu18, &temp_data, &accel_data, &gyro_data, &tmst_data );
        log_printf( &logger, " TEMP: %.2f \r\n", temp_data );
        log_printf( &logger, " GYRO: x:%d y:%d z:%d \r\n", gyro_data.data_x,gyro_data.data_y,gyro_data.data_z );
        log_printf( &logger, " ACCEL: x:%d y:%d z:%d \r\n", accel_data.data_x,accel_data.data_y,accel_data.data_z );
        log_printf( &logger, "========================== \r\n" );
        Delay_ms ( 1000 );
    }    
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.6DOFIMU18

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Shutter Click

0

Shutter Click is an adapter Click board™ used to implement an automated capturing feature. This Click board™ features one 3.5mm jack connector suitable for a camera connection with which the frame is captured. By combining two mikroBUS™ pins and the VO617A, a high-reliability phototransistor from Vishay Semiconductors used as a camera activation switch, activating the camera's Auto-Focus and the action of taking pictures is realized. This Click board™ allows you to expressly capture frames in a simple way for various types of photographic and security applications to capture those parts you need.

[Learn More]

Analog MUX 4 Click

0

Analog MUX 4 Click is a compact add-on board that switches one of many analog inputs to one digital output. This board features the TMUX1308, a general-purpose 8:1 single-ended CMOS multiplexer (MUX) from Texas Instruments. The TMUX1308 has an internal injection current control which eliminates the need for external diode and resistor networks to protect the switch and keep the input signals within the supply voltage. It also supports bidirectional analog and digital signals ranging from 0 to 5V, alongside several protection features allowing a reliable operation and protecting the device from potential damage.

[Learn More]

H-Bridge 7 Click

0

H-Bridge 7 Click features flexible motor driver IC for a wide variety of applications, labeled as the DRV8876N. This Click board™ integrates an N-channel H-bridge, charge pump regulator, and protection circuitry. The charge pump improves efficiency by allowing for both high-side and low-side N-channels MOSFETs and 100% duty cycle support. This IC allows the H-Bridge 7 Click to achieve ultra-low quiescent current draw by shutting down most of the internal circuitry with his low-power sleep mode.

[Learn More]