We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.9
mikroSDK Library: 2.0.0.0
Category: GPS/GNSS
Downloaded: 114 times
Not followed.
License: MIT license
LBAND RTK Click is a compact add-on board that provides global and easy access to satellite L-Band GNSS corrections. This board features the NEO-D9S-00B, an professional-grade satellite data receiver for L-band correction broadcast from u-blox. Operating in a frequency range from 1525MHz to 1559MHz, the NEO-D9S-00B decodes the satellite transmission and outputs a correction stream, enabling a high-precision GNSS receiver to reach accuracies down to centimeter level. It can also select the GNSS correction data delivery channel alongside advanced security features such as signature and anti-jamming.
Do you want to subscribe in order to receive notifications regarding "LBAND RTK Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "LBAND RTK Click" changes.
Do you want to report abuse regarding "LBAND RTK Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5150_lband_rtk_click.zip [732.00KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
LBAND RTK Click is a compact add-on board that provides global and easy access to satellite L-Band GNSS corrections. This board features the NEO-D9S-00B, an professional-grade satellite data receiver for L-band correction broadcast from u-blox. Operating in a frequency range from 1525MHz to 1559MHz, the NEO-D9S-00B decodes the satellite transmission and outputs a correction stream, enabling a high-precision GNSS receiver to reach accuracies down to centimeter level. It can also select the GNSS correction data delivery channel alongside advanced security features such as signature and anti-jamming.
We provide a library for the LBAND RTK Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for LBAND RTK Click driver.
lbandrtk_cfg_setup
Config Object Initialization function.
void lbandrtk_cfg_setup ( lbandrtk_cfg_t *cfg );
lbandrtk_init
Initialization function.
err_t lbandrtk_init ( lbandrtk_t *ctx, lbandrtk_cfg_t *cfg );
lbandrtk_set_default_pmp_cfg
This function sets the Point to multipoint (PMP) to default configuration to RAM layer.
err_t lbandrtk_set_default_pmp_cfg ( lbandrtk_t *ctx );;
lbandrtk_get_pmp_cfg
This function reads the Point to multipoint (PMP) configuration from RAM layer.
err_t lbandrtk_get_pmp_cfg ( lbandrtk_t *ctx, lbandrtk_pmp_cfg_t *pmp_cfg );
lbandrtk_read_ubx_frame
This function waits for an UBX frame message to arrive and reads it.
err_t lbandrtk_read_ubx_frame ( lbandrtk_t *ctx, lbandrtk_ubx_frame_t *frame );
This example demonstrates the use of LBAND RTK Click by setting the Point to multipoint (PMP) configuration and waiting for the UBX-RXM-PMP message, then parsing it and displaying on the USB UART.
The demo application is composed of two sections :
Initializes the driver, reads the module version, sets the Point to multipoint (PMP) configuration (for EU center frequency by default) and then reads that config and displays on the USB UART.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
lbandrtk_cfg_t lbandrtk_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
lbandrtk_cfg_setup( &lbandrtk_cfg );
LBANDRTK_MAP_MIKROBUS( lbandrtk_cfg, MIKROBUS_1 );
if ( LBANDRTK_OK != lbandrtk_init( &lbandrtk, &lbandrtk_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
Delay_ms ( 100 );
// Read module version
lbandrtk.frame.class_id = LBANDRTK_CLASS_ID_UBX_MON;
lbandrtk.frame.msg_id = LBANDRTK_MSG_ID_UBX_MON_VER;
lbandrtk.frame.payload_len = 0;
// send poll request
lbandrtk_write_ubx_frame ( &lbandrtk, &lbandrtk.frame );
// read polled message
if ( LBANDRTK_OK == lbandrtk_read_ubx_frame ( &lbandrtk, &lbandrtk.frame ) )
{
log_printf( &logger, " ------ MODULE VERSION ------\r\n" );
log_printf( &logger, " SW version:\r\n %s\r\n\n", &lbandrtk.frame.payload[ 0 ] );
log_printf( &logger, " HW version:\r\n %s\r\n\n", &lbandrtk.frame.payload[ 30 ] );
log_printf( &logger, " Extension:\r\n" );
for ( uint16_t cnt = 0; cnt < ( ( lbandrtk.frame.payload_len - 40 ) / 30 ); cnt++ )
{
log_printf( &logger, " %s\r\n", &lbandrtk.frame.payload[ 40 + cnt * 30 ] );
}
log_printf( &logger, " ----------------------------\r\n\n" );
}
Delay_ms ( 100 );
if ( LBANDRTK_ERROR == lbandrtk_set_default_pmp_cfg ( &lbandrtk ) )
{
log_error( &logger, " Set default PMP configuration." );
for ( ; ; );
}
lbandrtk_pmp_cfg_t pmp_cfg;
if ( LBANDRTK_OK == lbandrtk_get_pmp_cfg ( &lbandrtk, &pmp_cfg ) )
{
log_printf( &logger, " ----- PMP CONFIGURATION ----\r\n" );
log_printf( &logger, " Center frequency: %lu\r\n", pmp_cfg.center_freq );
log_printf( &logger, " Search window: %u\r\n", pmp_cfg.search_window );
log_printf( &logger, " Use service ID: %u\r\n", ( uint16_t ) pmp_cfg.use_service_id );
log_printf( &logger, " Service ID: %u\r\n", pmp_cfg.service_id );
log_printf( &logger, " Data rate: %u\r\n", pmp_cfg.data_rate );
log_printf( &logger, " Use descrambler: %u\r\n", ( uint16_t ) pmp_cfg.use_descrambler );
log_printf( &logger, " Descrambler init: %u\r\n", pmp_cfg.descrambler_init );
log_printf( &logger, " Use prescrambling: %lu\r\n", ( uint16_t ) pmp_cfg.use_prescrambling );
log_printf( &logger, " Unique word: 0x%.8LX%.8LX\r\n", pmp_cfg.unique_word_high, pmp_cfg.unique_word_low );
log_printf( &logger, " ----------------------------\r\n\n" );
}
log_info( &logger, " Application Task " );
}
Waits for an incoming UBX messages, reads and displays them on the USB UART. If the received message is PMP data it will be parsed additionally.
void application_task ( void )
{
if ( LBANDRTK_OK == lbandrtk_read_ubx_frame ( &lbandrtk, &lbandrtk.frame ) )
{
if ( ( LBANDRTK_CLASS_ID_UBX_RXM == lbandrtk.frame.class_id ) && ( LBANDRTK_MSG_ID_UBX_RXM_PMP == lbandrtk.frame.msg_id ) )
{
log_printf( &logger, " -------- UBX-RXM-PMP -------\r\n" );
uint16_t num_bytes_user_data = LBANDRTK_UBX_RXM_PMP_MAX_USER_DATA; // Number of bytes for user data for message version 0
log_printf( &logger, " Version: %u\r\n", ( uint16_t ) lbandrtk.frame.payload[ 0 ] );
log_printf( &logger, " Time tag [ms]: %lu\r\n",
( ( uint32_t ) lbandrtk.frame.payload[ 7 ] << 24 ) | ( ( uint32_t ) lbandrtk.frame.payload[ 6 ] << 16 ) |
( ( uint16_t ) lbandrtk.frame.payload[ 5 ] << 8 ) | lbandrtk.frame.payload[ 4 ] );
log_printf( &logger, " Unique word: 0x%.8LX%.8LX\r\n",
( ( uint32_t ) lbandrtk.frame.payload[ 15 ] << 24 ) | ( ( uint32_t ) lbandrtk.frame.payload[ 14 ] << 16 ) |
( ( uint16_t ) lbandrtk.frame.payload[ 13 ] << 8 ) | lbandrtk.frame.payload[ 12 ],
( ( uint32_t ) lbandrtk.frame.payload[ 11 ] << 24 ) | ( ( uint32_t ) lbandrtk.frame.payload[ 10 ] << 16 ) |
( ( uint16_t ) lbandrtk.frame.payload[ 9 ] << 8 ) | lbandrtk.frame.payload[ 8 ] );
log_printf( &logger, " Unique word bit errors: %u\r\n", ( uint16_t ) lbandrtk.frame.payload[ 19 ] );
// Check the received message version
if ( lbandrtk.frame.payload[ 0 ] )
{
log_printf( &logger, " FEC bits : %u\r\n", ( ( uint16_t ) lbandrtk.frame.payload[ 21 ] << 8 ) | lbandrtk.frame.payload[ 20 ] );
log_printf( &logger, " Eb/N0 [dB] : %.3f\r\n", lbandrtk.frame.payload[ 22 ] * LBANDRTK_UBX_RXM_PMP_EBN0_SCALE );
}
else
{
log_printf( &logger, " FEC bits : %u\r\n", ( ( uint16_t ) lbandrtk.frame.payload[ 525 ] << 8 ) | lbandrtk.frame.payload[ 524 ] );
log_printf( &logger, " Eb/N0 [dB] : %.3f\r\n", lbandrtk.frame.payload[ 526 ] * LBANDRTK_UBX_RXM_PMP_EBN0_SCALE );
}
log_printf( &logger, "\r\n Service ID : %u\r\n", ( ( uint16_t ) lbandrtk.frame.payload[ 17 ] << 8 ) | lbandrtk.frame.payload[ 16 ] );
log_printf( &logger, " Spare byte: %u\r\n", ( uint16_t ) lbandrtk.frame.payload[ 18 ] );
// Check the received message version
if ( lbandrtk.frame.payload[ 0 ] )
{
// Get number of bytes for user data for message version 1
num_bytes_user_data = ( ( uint16_t ) lbandrtk.frame.payload[ 3 ] << 8 ) | lbandrtk.frame.payload[ 2 ];
if ( num_bytes_user_data > LBANDRTK_UBX_RXM_PMP_MAX_USER_DATA )
{
num_bytes_user_data = LBANDRTK_UBX_RXM_PMP_MAX_USER_DATA;
}
log_printf( &logger, " User data bytes: %u\r\n", num_bytes_user_data );
log_printf( &logger, " User data:\r\n" );
for ( uint16_t cnt = 0; cnt < num_bytes_user_data; cnt++ )
{
if ( 0 == ( cnt % 20 ) )
{
log_printf( &logger, "\r\n" );
}
log_printf( &logger, "%.2X ", ( uint16_t ) lbandrtk.frame.payload[ 24 + cnt ] );
}
}
else
{
log_printf( &logger, " User data bytes: %u\r\n", num_bytes_user_data );
log_printf( &logger, " User data:\r\n" );
for ( uint16_t cnt = 0; cnt < num_bytes_user_data; cnt++ )
{
if ( 0 == ( cnt % 20 ) )
{
log_printf( &logger, "\r\n" );
}
log_printf( &logger, " %.2X", ( uint16_t ) lbandrtk.frame.payload[ 20 + cnt ] );
}
}
log_printf( &logger, "\r\n ----------------------------\r\n\n" );
Delay_ms ( 100 );
}
else
{
log_printf( &logger, " ---- UBX FRAME RECEIVED ----\r\n" );
log_printf( &logger, " Class ID: 0x%.2X\r\n", ( uint16_t ) lbandrtk.frame.class_id );
log_printf( &logger, " Message ID: 0x%.2X\r\n", ( uint16_t ) lbandrtk.frame.msg_id );
log_printf( &logger, " Payload length: %u\r\n", lbandrtk.frame.payload_len );
log_printf( &logger, " Payload:" );
for ( uint16_t cnt = 0; cnt < lbandrtk.frame.payload_len; cnt++ )
{
if ( 0 == ( cnt % 20 ) )
{
log_printf( &logger, "\r\n" );
}
log_printf( &logger, " %.2X", ( uint16_t ) lbandrtk.frame.payload[ cnt ] );
}
log_printf( &logger, "\r\n ----------------------------\r\n\n" );
Delay_ms ( 100 );
}
}
}
Make sure to use a correct L-Band antenna and that it's placed outside on open-sky in order to be able to receive PMP data from satellites.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.