TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141115 times)
  2. FAT32 Library (73906 times)
  3. Network Ethernet Library (58554 times)
  4. USB Device Library (48725 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43977 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27304 times)
  10. microSD click (27132 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

1-Wire Switch Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: 1-Wire

Downloaded: 218 times

Not followed.

License: MIT license  

1-Wire Switch Click is a compact add-on board that allows you to switch a device remotely using a 1-wire signal. This board features the DS2413, a dual-channel programmable I/O 1-Wire switch from Analog Devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "1-Wire Switch Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "1-Wire Switch Click" changes.

Do you want to report abuse regarding "1-Wire Switch Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


1-Wire Switch Click

1-Wire Switch Click is a compact add-on board that allows you to switch a device remotely using a 1-wire signal. This board features the DS2413, a dual-channel programmable I/O 1-Wire switch from Analog Devices.

1wireswitch_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jan 2023.
  • Type : One Wire type

Software Support

We provide a library for the 1-Wire Switch Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for 1-Wire Switch Click driver.

Standard key functions :

  • c1wireswitch_cfg_setup Config Object Initialization function.

    void c1wireswitch_cfg_setup ( c1wireswitch_cfg_t *cfg );
  • c1wireswitch_init Initialization function.

    err_t c1wireswitch_init ( c1wireswitch_t *ctx, c1wireswitch_cfg_t *cfg );
  • c1wireswitch_default_cfg Click Default Configuration function.

    err_t c1wireswitch_default_cfg ( c1wireswitch_t *ctx );

Example key functions :

  • c1wireswitch_set_pio_state 1-Wire Switch write specific programmable I/O state function.

    err_t c1wireswitch_set_pio_state ( c1wireswitch_t *ctx, uint8_t pio_a, uint8_t pio_b );
  • c1wireswitch_get_pio_state 1-Wire Switch read specific programmable I/O state function.

    err_t c1wireswitch_get_pio_state ( c1wireswitch_t *ctx, uint8_t *pio_a, uint8_t *pio_b );
  • c1wireswitch_get_pio_latch_state 1-Wire Switch read programmable I/O latch state function.

    err_t c1wireswitch_get_pio_latch_state ( c1wireswitch_t *ctx, uint8_t *pio_a_latch, uint8_t *pio_b_latch );

Example Description

This library contains API for 1-Wire Switch Click driver. The library initializes and defines the 1-Wire bus drivers to write and read data for state programmable I/O, as well as the default configuration.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs default configuration and sets the PIO A to OFF and PIO B to ON state.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c1wireswitch_cfg_t c1wireswitch_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    c1wireswitch_cfg_setup( &c1wireswitch_cfg );
    C1WIRESWITCH_MAP_MIKROBUS( c1wireswitch_cfg, MIKROBUS_1 );
    if ( ONE_WIRE_ERROR == c1wireswitch_init( &c1wireswitch, &c1wireswitch_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( C1WIRESWITCH_ERROR == c1wireswitch_default_cfg ( &c1wireswitch ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    c1wireswitch_set_pio_state( &c1wireswitch, C1WIRESWITCH_PIOA_OFF, C1WIRESWITCH_PIOB_ON );

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the 1-Wire Switch Click board by changing the PIO A state, which is controlling the LED, every time the state of PIO B changes. Change on the PIO B happens when the button is pushed.

void application_task ( void ) 
{
    uint8_t pio_a = 0;
    uint8_t pio_b = 0;

    c1wireswitch_get_pio_state( &c1wireswitch, &pio_a, &pio_b );

    if ( pio_b == C1WIRESWITCH_PIOB_OFF )
    {
        if ( state == 0 )
        {
            c1wireswitch_set_pio_state( &c1wireswitch, C1WIRESWITCH_PIOA_ON, C1WIRESWITCH_PIOB_ON );
            log_printf( &logger, " Button is pressed, LED is ON. \r\n " );
            state = 1;
        }
        else
        {
            c1wireswitch_set_pio_state( &c1wireswitch, C1WIRESWITCH_PIOA_OFF, C1WIRESWITCH_PIOB_ON );
            log_printf( &logger, " Button is pressed, LED is OFF. \r\n " );
            state = 0;
        }
        Delay_ms ( 100 );
    }
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.c1WireSwitch

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

BATT-MON 2 Click

0

BATT-MON 2 Click is a compact add-on board representing a battery monitoring solution. This board features the MAX17262, an ultra-low power I2C-configurable fuel-gauge IC which implements the ModelGauge™ m5 algorithm from Analog Devices. The MAX17262 monitors a single-cell battery pack (best performance for batteries with 100mAhr to 6Ahr capacity), providing precision measurements of current, voltage, and temperature, and supporting internal current sensing for up to 3.1A pulse current. The battery pack's temperature is measured using an internal temperature sensor or external thermistor.

[Learn More]

EEPROM 10 Click

0

EEPROM 10 Click is a compact add-on board that contains the highest-density memory solution. This board features the N24C32, a 32Kb I2C CMOS Serial EEPROM from ON Semiconductor. It is internally organized as 128 pages of 32 bytes each, with a 32-byte page write buffer and a fast write time of up to 4ms.

[Learn More]

Multimeter click

5

Multimeter click is a Click board designed to measure voltage, current, resistance, and capacitance properties of the components, connected to the input terminals.

[Learn More]