TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141685 times)
  2. FAT32 Library (74749 times)
  3. Network Ethernet Library (59206 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44994 times)
  6. FT800 Library (44519 times)
  7. GSM click (31196 times)
  8. mikroSDK (30095 times)
  9. microSD click (27579 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

eFuse 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Power Switch

Downloaded: 207 times

Not followed.

License: MIT license  

eFuse 5 Click is a compact add-on board with a power path protection solution that limits circuit currents and voltages to safe levels during fault conditions. This board features the TPS16530, an easy-to-use, positive 58V, 4.5A eFuse with a 31mΩ integrated FET from Texas Instruments. This industrial eFuse has programmable undervoltage, overcurrent, inrush current protection, and output current monitoring features. Besides, it allows flexibility to configure the device between the two current-limiting fault responses (latch off and auto-retry).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "eFuse 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "eFuse 5 Click" changes.

Do you want to report abuse regarding "eFuse 5 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


eFuse 5 Click

eFuse 5 Click is a compact add-on board with a power path protection solution that limits circuit currents and voltages to safe levels during fault conditions. This board features the TPS16530, an easy-to-use, positive 58V, 4.5A eFuse with a 31mΩ integrated FET from Texas Instruments. This industrial eFuse has programmable undervoltage, overcurrent, inrush current protection, and output current monitoring features. Besides, it allows flexibility to configure the device between the two current-limiting fault responses (latch off and auto-retry).

efuse5_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Feb 2023.
  • Type : I2C type

Software Support

We provide a library for the eFuse 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for eFuse 5 Click driver.

Standard key functions :

  • efuse5_cfg_setup Config Object Initialization function.

    void efuse5_cfg_setup ( efuse5_cfg_t *cfg );
  • efuse5_init Initialization function.

    err_t efuse5_init ( efuse5_t *ctx, efuse5_cfg_t *cfg );
  • efuse5_default_cfg Click Default Configuration function.

    err_t efuse5_default_cfg ( efuse5_t *ctx );

Example key functions :

  • efuse5_set_current_limit eFuse 5 set the current limit function.

    err_t efuse5_set_current_limit ( efuse5_t *ctx, efuse5_current_limit_t current_limit );
  • efuse5_set_resistance eFuse 5 set the resistance function.

    err_t efuse5_set_resistance ( efuse5_t *ctx, uint16_t res_ohm );
  • efuse5_get_fault eFuse 5 gets fault condition state function.

    uint8_t efuse5_get_fault ( efuse5_t *ctx );

Example Description

This library contains API for the eFuse 5 Click driver. This driver provides the functions to set the current limiting conditions to provide the threshold of the fault conditions.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization, default settings turn on the device.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    efuse5_cfg_t efuse5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    efuse5_cfg_setup( &efuse5_cfg );
    EFUSE5_MAP_MIKROBUS( efuse5_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == efuse5_init( &efuse5, &efuse5_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( EFUSE5_ERROR == efuse5_default_cfg( &efuse5 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------------\r\n" );
}

Application Task

This example demonstrates the use of the eFuse 5 Click board™. In this example, the app sets the current limit to 600 mA for 10 seconds and then sets the current limit to 1200 mA for the next 10 seconds to protect the electrical circuit against excessive current. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    if ( EFUSE5_OK == efuse5_set_current_limit( &efuse5, EFUSE5_CURRENT_LIMIT_600_mA ) )
    {
        log_printf( &logger, "  Current limit:  600 mA   \r\n" );
        log_printf( &logger, "---------------------------\r\n" );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    if ( EFUSE5_OK == efuse5_set_current_limit( &efuse5, EFUSE5_CURRENT_LIMIT_1200_mA ) )
    {
        log_printf( &logger, "  Current limit: 1200 mA   \r\n" );
        log_printf( &logger, "---------------------------\r\n" );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.eFuse5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Wheatstone click

5

Wheatstone Click is a measurement Click board which utilizes a Wheatstone bridge circuit onboard, in order to precisely measure the resistance of an external element. Besides the wheatstone bridge circuit, this Click board also utilizes MAX4208 – an ultra-low offset/drift, precision instrumentation amplifier, from Maxim Integrated.

[Learn More]

LED Driver 10 Click

0

LED Driver 10 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the TLC59283, a 16-channel, constant-current sink light-emitting diode (LED) driver with pre-charge FET from Texas Instruments.

[Learn More]

ProxFusion Click

0

ProxFusion Click is a multifunctional capacitive and Hall-effect sensor device. This Click can detect touch by using two onboard sensor pads, and it can sense a rotation angle of a magnetic field, parallel with the surface of the Click board.

[Learn More]