TOP Contributors

  1. MIKROE (2781 codes)
  2. Alcides Ramos (377 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139580 times)
  2. FAT32 Library (72043 times)
  3. Network Ethernet Library (57260 times)
  4. USB Device Library (47633 times)
  5. Network WiFi Library (43229 times)
  6. FT800 Library (42568 times)
  7. GSM click (29932 times)
  8. mikroSDK (28313 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Smart DOF 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 83 times

Not followed.

License: MIT license  

Smart DOF 2 Click is a compact add-on board with a highly advanced integrated 6-axis IMU measurement unit. This board features the LSM6DSV16XTR, a high-performance 6-axis IMU with sensor fusion, ASC, MLC, Qvar, and OIS/EIS paths from STMicroelectronics. The IMU unit features an accelerometer and gyroscope that can be turned off independently of each other, still allowed to have different ODRs and power modes. The unit can be configured as a finite state machine (FSM), machine learning core (MLC), and Qvar sensing.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Smart DOF 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Smart DOF 2 Click" changes.

Do you want to report abuse regarding "Smart DOF 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Smart DOF 2 Click

Smart DOF 2 Click is a compact add-on board with a highly advanced integrated 6-axis IMU measurement unit. This board features the LSM6DSV16XTR, a high-performance 6-axis IMU with sensor fusion, ASC, MLC, Qvar, and OIS/EIS paths from STMicroelectronics. The IMU unit features an accelerometer and gyroscope that can be turned off independently of each other, still allowed to have different ODRs and power modes. The unit can be configured as a finite state machine (FSM), machine learning core (MLC), and Qvar sensing.

smartdof2_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Mar 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Smart DOF 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Smart DOF 2 Click driver.

Standard key functions :

  • smartdof2_cfg_setup Config Object Initialization function.

    void smartdof2_cfg_setup ( smartdof2_cfg_t *cfg );
  • smartdof2_init Initialization function.

    err_t smartdof2_init ( smartdof2_t *ctx, smartdof2_cfg_t *cfg );
  • smartdof2_default_cfg Click Default Configuration function.

    err_t smartdof2_default_cfg ( smartdof2_t *ctx );

Example key functions :

  • smartdof2_get_acc_axis Smart DOF 2 get accel sensor axes function.

    err_t smartdof2_get_acc_axis ( smartdof2_t *ctx, smartdof2_axis_t *acc_axis );
  • smartdof2_get_gyro_axis Smart DOF 2 get gyro sensor axes function.

    err_t smartdof2_get_gyro_axis ( smartdof2_t *ctx, smartdof2_axis_t *gyro_axis );
  • smartdof2_get_temperature Smart DOF 2 get temperature function.

    err_t smartdof2_get_temperature ( smartdof2_t *ctx, float *temperature );

Example Description

This library contains API for Smart DOF 2 Click driver. The library initializes and defines the I2C or SPI bus drivers to write and read data from registers. The library also includes a function for reading accelerometer and gyroscope X-axis, Y-axis, and Z-axis data and the temperature in degrees Celsius.

The demo application is composed of two sections :

Application Init

The initialization of I2C or SPI module, log UART, and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    smartdof2_cfg_t smartdof2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    smartdof2_cfg_setup( &smartdof2_cfg );
    SMARTDOF2_MAP_MIKROBUS( smartdof2_cfg, MIKROBUS_1 );
    err_t init_flag = smartdof2_init( &smartdof2, &smartdof2_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( SMARTDOF2_ERROR == smartdof2_default_cfg ( &smartdof2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "--------------------------------------\r\n" );
}

Application Task

This example demonstrates the use of the Smart DOF 2 Click board™. Measures and displays acceleration and gyroscope data for X-axis, Y-axis, and Z-axis. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    static smartdof2_axis_t acc_axis, gyro_axis;
    if ( SMARTDOF2_OK == smartdof2_get_acc_axis( &smartdof2, &acc_axis ) )
    {
        if ( SMARTDOF2_OK == smartdof2_get_gyro_axis( &smartdof2, &gyro_axis ) )
        {
            log_printf( &logger, " Accel X: %.2f mg | Gyro X: %.2f mdps\r\n", acc_axis.x, gyro_axis.x );
            log_printf( &logger, " Accel Y: %.2f mg | Gyro Y: %.2f mdps\r\n", acc_axis.y, gyro_axis.y );
            log_printf( &logger, " Accel Z: %.2f mg | Gyro Z: %.2f mdps\r\n", acc_axis.z, gyro_axis.z );
            log_printf( &logger, "--------------------------------------\r\n" );
        }
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SmartDOF2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

NO2 2 click

5

NO2 2 Click is a gas sensor Click boardâ„¢, equipped with the MiCS-2714, a compact metal oxide (MOS) sensor. This sensor reacts to the presence of nitrogen dioxide (NO2) and hydrogen (H2).

[Learn More]

Vacuum click

10

Vacuum click is an accurate pressure-sensor click board that is capable of measuring pressure values down to -115kPa. This click boardâ„¢ utilizes a very precise and low thermal drift, absolute pressure-sensor from NXP, labeled as MPXV6115V.

[Learn More]

EEPROM 7 Click

0

EEPROM 7 Click is a compact add-on board that contains the highest-density memory solution. This board feature the 25CSM04, a 4-Mbit SPI Serial EEPROM with a 128-bit serial number and enhanced write protection mode from Microchip. Internally organized as 2,048 pages of 256 bytes each, the 25CSM04 comes up with the compatible SPI serial interface.

[Learn More]