TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139949 times)
  2. FAT32 Library (72296 times)
  3. Network Ethernet Library (57465 times)
  4. USB Device Library (47771 times)
  5. Network WiFi Library (43396 times)
  6. FT800 Library (42725 times)
  7. GSM click (30000 times)
  8. mikroSDK (28514 times)
  9. PID Library (27003 times)
  10. microSD click (26408 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Angle 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 117 times

Not followed.

License: MIT license  

Angle 9 Click is a compact add-on board that detects the absolute position of a permanent magnet. This board features the AAS33001, a precision angle sensor with incremental and motor commutation outputs and on-chip linearization from Allegro Microsystems. It is a contactless angle sensor for 0° to 360° angular position, rotation speed, and directional measurement. Support for incremental output interface (ABI) and motor commutation (UVW) is also available. The same goes for the on-chip EEPROM for storing factory and customer calibration parameters.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Angle 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Angle 9 Click" changes.

Do you want to report abuse regarding "Angle 9 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Angle 9 Click

Angle 9 Click is a compact add-on board that detects the absolute position of a permanent magnet. This board features the AAS33001, a precision angle sensor with incremental and motor commutation outputs and on-chip linearization from Allegro Microsystems. It is a contactless angle sensor for 0° to 360° angular position, rotation speed, and directional measurement. Support for incremental output interface (ABI) and motor commutation (UVW) is also available. The same goes for the on-chip EEPROM for storing factory and customer calibration parameters.

angle9_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2023.
  • Type : SPI type

Software Support

We provide a library for the Angle 9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Angle 9 Click driver.

Standard key functions :

  • angle9_cfg_setup Config Object Initialization function.

    void angle9_cfg_setup ( angle9_cfg_t *cfg );
  • angle9_init Initialization function.

    err_t angle9_init ( angle9_t *ctx, angle9_cfg_t *cfg );

Example key functions :

  • angle9_read_angle This function reads the magnetic angular position in degrees.

    err_t angle9_read_angle ( angle9_t *ctx, float *angle );
  • angle9_read_field_strength This function reads the magnetic field strength in gauss.

    err_t angle9_read_field_strength ( angle9_t *ctx, uint16_t *field_str );
  • angle9_read_temperature This function reads the sensor internal temperature in degrees celsius.

    err_t angle9_read_temperature ( angle9_t *ctx, float *temperature );

Example Description

This example demonstrates the use of Angle 9 Click board by reading and displaying the magnet's angular position in degrees, field strength in gauss, and the internal sensor temperature in degrees celsius.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    angle9_cfg_t angle9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    angle9_cfg_setup( &angle9_cfg );
    ANGLE9_MAP_MIKROBUS( angle9_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == angle9_init( &angle9, &angle9_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the magnet's angular position in degrees, magnetic field strength in gauss, and the internal sensor temperature in degrees celsius and displays the results on the USB UART approximately every 100ms.

void application_task ( void )
{
    float angle = 0;
    float int_temp = 0;
    uint16_t field_str = 0;
    if ( ANGLE9_OK == angle9_read_angle ( &angle9, &angle ) )
    {
        log_printf ( &logger, " Angle: %.1f deg\r\n", angle );
        if ( ANGLE9_OK == angle9_read_field_strength ( &angle9, &field_str ) )
        {
            log_printf ( &logger, " Field strength: %u Gauss\r\n", field_str );
        }
        if ( ANGLE9_OK == angle9_read_temperature ( &angle9, &int_temp ) )
        {
            log_printf ( &logger, " Internal temperature: %.2f degC\r\n\n", int_temp );
        }
        Delay_ms ( 100 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Angle9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Ambient 11 Click

0

The Ambient 11 Click is a Click board™ equipped with the VEML6035,a low power, high sensitivity, I2C ambient light sensor from Vishay Semiconductors.Because of the possibilities its features offer,the Ambient 11 Click can be used as an ambient light sensor for mobile devices,industrial lighting operation, and as an optical switch for consumer,computing and industrial devices and displays.

[Learn More]

Wheatstone Click

0

Wheatstone Click is a measurement Click board™ which utilizes a Wheatstone bridge circuit onboard, in order to precisely measure the resistance of an external element. Besides the wheatstone bridge circuit, this Click board™ also utilizes MAX4208 – an ultra-low offset/drift, precision instrumentation amplifier, from Maxim Integrated.

[Learn More]

RTC I2C Library

8

This library provides functions for working with all RTC clicks which use i2c communication. Functions include getting and setting GMT time, as well as local time. Calculating UNIX timestamp for both local and GMT time, and many more. NOTE: Not all functions are provided for all RTCs. As some RTCs do not support square wave output or alarms.

[Learn More]