We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.7
mikroSDK Library: 2.0.0.0
Category: EEPROM
Downloaded: 174 times
Not followed.
License: MIT license
EEPROM 9 Click is a compact add-on board with a highly reliable nonvolatile memory solution. This board features the M95P32-I, the 32Mbit electrically erasable programmable memory with enhanced hardware write protection from STMicroelectronics.
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5276_eeprom_9_click.zip [423.11KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
EEPROM 9 Click is a compact add-on board with a highly reliable nonvolatile memory solution. This board features the M95P32-I, the 32Mbit electrically erasable programmable memory with enhanced hardware write protection from STMicroelectronics.
We provide a library for the EEPROM 9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for EEPROM 9 Click driver.
eeprom9_cfg_setup
Config Object Initialization function.
void eeprom9_cfg_setup ( eeprom9_cfg_t *cfg );
eeprom9_init
Initialization function.
err_t eeprom9_init ( eeprom9_t *ctx, eeprom9_cfg_t *cfg );
eeprom9_set_write_enable
EEPROM 9 enable write function.
err_t eeprom9_set_write_enable ( eeprom9_t *ctx, uint8_t en_write );
eeprom9_read_memory
EPROM 9 memory reading function.
err_t eeprom9_read_memory ( eeprom9_t *ctx, uint32_t mem_addr, uint8_t *data_out, uint8_t len );
eeprom9_block_erase
EEPROM 9 memory block erase function.
err_t eeprom9_block_erase ( eeprom9_t *ctx, uint32_t block_addr );
This is an example that demonstrates the use of the EEPROM 9 Click board.
The demo application is composed of two sections :
Initializes the driver and USB UART logging, disables hold and write protection.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
eeprom9_cfg_t eeprom9_cfg; /**< Click config object. */
id_data_t id_data;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
eeprom9_cfg_setup( &eeprom9_cfg );
EEPROM9_MAP_MIKROBUS( eeprom9_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == eeprom9_init( &eeprom9, &eeprom9_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
eeprom9_read_identification( &eeprom9, &id_data );
if ( EEPROM9_ST_MANUFACTURER_CODE != id_data.manufact_code )
{
log_error( &logger, " Communication error." );
for ( ; ; );
}
log_printf( &logger, " Manufacturer code: 0x%.2X \r\n", ( uint16_t ) id_data.manufact_code );
log_printf( &logger, " Disabling Hold \r\n" );
eeprom9_set_hold( &eeprom9, EEPROM9_HOLD_DISABLE );
Delay_ms ( 100 );
log_printf( &logger, " Disabling Write Protection \r\n" );
eeprom9_set_write_protection( &eeprom9, EEPROM9_WRITE_PROTECT_DISABLE );
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
log_printf( &logger, " - - - - - - - - - - - \r\n" );
}
Writes a desired number of data bytes to the EEPROM 9 memory into a specified address, and verifies that it is written correctly by reading from the same memory location.
void application_task ( void )
{
char rx_data[ 9 ] = { 0 };
eeprom9_set_write_enable( &eeprom9, EEPROM9_WRITE_ENABLE );
Delay_ms ( 10 );
eeprom9_write_memory( &eeprom9, MEMORY_ADDRESS, demo_data, 9 );
log_printf( &logger, " Write data: %s", demo_data );
Delay_ms ( 100 );
eeprom9_read_memory( &eeprom9, MEMORY_ADDRESS, rx_data, 9 );
log_printf( &logger, " Read data: %s", rx_data );
log_printf( &logger, " - - - - - - - - - - - \r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.
DC Motor 13 Click is a compact add-on board with a brushed DC motor driver. This board features the TB67H481FNG, a dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor that uses the PWM IN interface to control the DC motor outputs. Fabricated with the BiCD process (DMOSFET is used for output power transistor), it covers a wide operating voltage range of 8.2V to 44V with a maximum output current capacity of 2A. It also offers helpful features like a robust and reliable operation, like the decay modes selection function, PWM constant-current drive, torque settings, protection features, and one anomaly detection indicator.
[Learn More]Touchpad 2 Click is a compact add-on board that easily integrates projected capacitive touch into their applications. This board features the IQS525, a projected capacitive touch and proximity trackpad/touchscreen controller from Azoteq. It features best in class sensitivity, signal-to-noise ratio, and automatic tuning of electrodes, in addition to the multi-touch and multi-hover feature. This Click board™ is characterized by embedded gesture engine recognition for simple gestures (tap, swipes, hold), as well as built-in noise detection and filtering. This Click board™ is suitable for human-machine interfaces, keypad or scrolling functions, single-finger gesture-based interfaces, and more.
[Learn More]RS485 4 Click offers an UART to RS485 signal conversion, featuring the ADM2795E specialized IC with the complete galvanic isolation.
[Learn More]You have unsaved changes. If you choose to leave all changes will be discarded.
Do you want to subscribe in order to receive notifications regarding "EEPROM 9 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 9 Click" changes.
Do you want to report abuse regarding "EEPROM 9 Click".