TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136734 times)
  2. FAT32 Library (69950 times)
  3. Network Ethernet Library (55941 times)
  4. USB Device Library (46265 times)
  5. Network WiFi Library (41886 times)
  6. FT800 Library (41170 times)
  7. GSM click (28983 times)
  8. PID Library (26413 times)
  9. mikroSDK (26360 times)
  10. microSD click (25375 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Smart Buck 4 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 23 times

Not followed.

License: MIT license  

Smart Buck 4 Click is a compact add-on board that contains a high-frequency synchronous step-down DC-DC converter. This board features the LTS3562, a quad synchronous step-down DC-DC regulator from Analog Devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Smart Buck 4 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Smart Buck 4 click" changes.

Do you want to report abuse regarding "Smart Buck 4 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Smart Buck 4 click

Smart Buck 4 Click is a compact add-on board that contains a high-frequency synchronous step-down DC-DC converter. This board features the LTS3562, a quad synchronous step-down DC-DC regulator from Analog Devices.

smartbuck4_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : May 2023.
  • Type : I2C type

Software Support

We provide a library for the Smart Buck 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Smart Buck 4 Click driver.

Standard key functions :

  • smartbuck4_cfg_setup Config Object Initialization function.

    void smartbuck4_cfg_setup ( smartbuck4_cfg_t *cfg );
  • smartbuck4_init Initialization function.

    err_t smartbuck4_init ( smartbuck4_t *ctx, smartbuck4_cfg_t *cfg );
  • smartbuck4_default_cfg Click Default Configuration function.

    err_t smartbuck4_default_cfg ( smartbuck4_t *ctx );

Example key functions :

  • smartbuck4_en_r40_reg Smart Buck 4 enable 400A regulator function.

    void smartbuck4_en_r40_reg ( smartbuck4_t *ctx );
  • smartbuck4_send_command Smart Buck 4 send command function.

    err_t smartbuck4_send_command ( smartbuck4_t *ctx, uint8_t addr, uint8_t data_in );
  • smartbuck4_disable_regulators Smart Buck 4 disable regulators function.

    err_t smartbuck4_disable_regulators ( smartbuck4_t *ctx );

Example Description

This example demonstrates the use of the Smart Buck 4 Click board. This driver provides functions for device configurations and for the setting of the output voltage.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After initializing the driver, the default configuration is executed and the outputs are turned off.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    smartbuck4_cfg_t smartbuck4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    smartbuck4_cfg_setup( &smartbuck4_cfg );
    SMARTBUCK4_MAP_MIKROBUS( smartbuck4_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == smartbuck4_init( &smartbuck4, &smartbuck4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( SMARTBUCK4_ERROR == smartbuck4_default_cfg ( &smartbuck4 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Changes the output voltage every 5 seconds, starting from 0.6 V to 3.3V/3.7V depending on the input voltage.


void application_task ( void ) 
{
    for ( uint8_t n_cnt = SMARTBUCK4_REGULATOR_B_600_MV; 
          n_cnt <= SMARTBUCK4_REGULATOR_B_3700_MV; 
          n_cnt += SMARTBUCK4_REGULATOR_B_700_MV )
    {
        err_t error_flag = smartbuck4_send_command( &smartbuck4, SMARTBUCK4_REG_R600B_PROGRAM | 
                                                                 SMARTBUCK4_REG_R400B_PROGRAM | 
                                                                 SMARTBUCK4_REG_LDO_MODE, 
                                                                 SMARTBUCK4_ENABLE_REGULATOR | n_cnt );
        if ( SMARTBUCK4_OK == error_flag )
        {
            log_printf( &logger, " Set output to %d mV. \r\n", 
                        ( SMARTBUCK4_MIN_VOLTAGE + n_cnt * SMARTBUCK4_STEP ) );
        }
        else
        {
            log_error( &logger, " Transmission error occurred." );
            smartbuck4_disable_regulators( &smartbuck4 );
            for ( ; ; );
        }
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SmartBuck4

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Brushless 10 click

0

Brushless 10 Click is a compact add-on board that provides precise control over brushless DC motors. This board features the TC78B016FTG, a 3-phase sine-wave PWM driver from Toshiba Semiconductor. The TC78B016FTG features Intelligent Phase Control (InPAC) for automatic motor phase adjustment, eliminating manual calibration, supporting an external power supply from 6V to 30V, and adjusting current output up to 3A. It also includes various control and diagnostic features such as rotational speed output, brake function, speed command, and safety detections with visual indicators. The onboard DAC also offers additional tunability for motor control enhancements like lead angle control, output duty cycle, motor lockout, and PWM frequency selection.

[Learn More]

Temp-Log 3 click

0

Temp-Log 3 click is a temperature measuring Click board™ featuring the MCP9843 IC, an accurate temperature sensor IC with integrated EEPROM

[Learn More]

FT click

5

FT Click is a compact smart transceiver add-on board that helps you add a Free Topology (FT) interface to any host board with the mikroBUS socket.

[Learn More]