TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141575 times)
  2. FAT32 Library (74513 times)
  3. Network Ethernet Library (59053 times)
  4. USB Device Library (49051 times)
  5. Network WiFi Library (44822 times)
  6. FT800 Library (44376 times)
  7. GSM click (31066 times)
  8. mikroSDK (29924 times)
  9. microSD click (27487 times)
  10. PID Library (27486 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Boost-INV 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 207 times

Not followed.

License: MIT license  

Boost-INV 3 Click is a compact add-on board designed to supply positive/negative-driven applications. This board features the TPS65132, a dual-output power supply from Texas Instruments. The TPS65132 uses a single inductor scheme for both outputs to provide the user with the smallest solution size and high efficiency.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Boost-INV 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Boost-INV 3 Click" changes.

Do you want to report abuse regarding "Boost-INV 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Boost-INV 3 Click

Boost-INV 3 Click is a compact add-on board designed to supply positive/negative-driven applications. This board features the TPS65132, a dual-output power supply from Texas Instruments. The TPS65132 uses a single inductor scheme for both outputs to provide the user with the smallest solution size and high efficiency.

boostinv3_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : May 2023.
  • Type : I2C type

Software Support

We provide a library for the Boost-INV 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Boost-INV 3 Click driver.

Standard key functions :

  • boostinv3_cfg_setup Config Object Initialization function.

    void boostinv3_cfg_setup ( boostinv3_cfg_t *cfg );
  • boostinv3_init Initialization function.

    err_t boostinv3_init ( boostinv3_t *ctx, boostinv3_cfg_t *cfg );
  • boostinv3_default_cfg Click Default Configuration function.

    err_t boostinv3_default_cfg ( boostinv3_t *ctx );

Example key functions :

  • boostinv3_set_enp Boost-INV 3 set ENP pin state function.

    void boostinv3_set_enp ( boostinv3_t *ctx, uint8_t out_state );
  • boostinv3_set_pos_out Boost-INV 3 set positive output voltage function.

    err_t boostinv3_set_pos_out ( boostinv3_t *ctx, uint8_t out_val );
  • boostinv3_set_neg_out Boost-INV 3 set negative output voltage function.

    err_t boostinv3_set_neg_out ( boostinv3_t *ctx, uint8_t out_val );

Example Description

This library contains API for the Boost-INV 3 Click driver. This driver provides the functions to set the output voltage treshold.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization, default settings enable the positive and negative output and sets the output voltage to 4 V.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    boostinv3_cfg_t boostinv3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    boostinv3_cfg_setup( &boostinv3_cfg );
    BOOSTINV3_MAP_MIKROBUS( boostinv3_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == boostinv3_init( &boostinv3, &boostinv3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    if ( BOOSTINV3_ERROR == boostinv3_default_cfg ( &boostinv3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the Boost-INV 3 Click board by changing

  • output voltage every 5 seconds starting from 4 V up to 6 V.
void application_task ( void ) 
{
    for ( uint8_t n_cnt = BOOSTINV3_OUT_VOLTAGE_4V; n_cnt <= BOOSTINV3_OUT_VOLTAGE_6V; n_cnt++ )
    {
        err_t error_flag = boostinv3_set_pos_out( &boostinv3, n_cnt );
        error_flag |= boostinv3_set_neg_out( &boostinv3, n_cnt );
        if ( BOOSTINV3_OK == error_flag )
        {
            log_printf( &logger, " Set positive and negative voltage to %.1f V \r\n", 
                        ( BOOSTINV3_MIN_VOL_LVL + n_cnt * BOOSTINV3_INCREMENT ) );
        }
        else
        {
            log_printf( &logger, " Error has occurred!!! \r\n" );
        }
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BoostINV3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Fan click

1

Comprehensive library that covers all the functions of the EMC2301 PWM Fan Controller. Fan click carries an EMC2301 controller for powering and regulating the operation of four-wire fans, which are commonly utilized as coolers in computers and other electronics.

[Learn More]

Mikromedia+ for Stellaris ARM - RF Communication Example

0

This is demonstration project how Mikromedia+ for Stellaris communicate over RF. Data is send over simple 'led protocol' (1 byte command). Development board for Stellaris with an add-on board nRF Click is used as a receiver device.

[Learn More]

RTK Rover Click

0

RTK Rover Click is a compact add-on board that enhances the precision of position data derived from compatible RTK Base Station. This board features Quectel’s LG69TAMMD, a dual-band multi-constellation GNSS module featuring a high-performance and high-reliability positioning engine. This module facilitates a fast and precise GNSS positioning capability for centimeter-level accuracy, featuring the fifth generation of STMicroelectronics® positioning receiver platform with 80 tracking and four fast acquisition channels. It supports up to 3 concurrent global constellations (GPS/QZSS, Galileo, and BDS) alongside NMEA 0183/RTCM 3.x protocol and commonly used UART interface.

[Learn More]