We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.8
mikroSDK Library: 2.0.0.0
Category: USB-C PD
Downloaded: 155 times
Not followed.
License: MIT license
USB C Sink 3 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33771, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.
Do you want to subscribe in order to receive notifications regarding "USB-C Sink 3 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "USB-C Sink 3 Click" changes.
Do you want to report abuse regarding "USB-C Sink 3 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5363_usb_c_sink_3_cli.zip [657.94KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
USB C Sink 3 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33771, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.
We provide a library for the USB-C Sink 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for USB-C Sink 3 Click driver.
usbcsink3_cfg_setup
Config Object Initialization function.
void usbcsink3_cfg_setup ( usbcsink3_cfg_t *cfg );
usbcsink3_init
Initialization function.
err_t usbcsink3_init ( usbcsink3_t *ctx, usbcsink3_cfg_t *cfg );
usbcsink3_default_cfg
Click Default Configuration function.
err_t usbcsink3_default_cfg ( usbcsink3_t *ctx );
usbcsink3_set_voltage
USB-C Sink 3 set the voltage function.
err_t usbcsink3_set_voltage ( usbcsink3_t *ctx, usbcsink3_vtg_sel_t voltage );
usbcsink3_set_power
USB-C Sink 3 set the power function.
err_t usbcsink3_set_power ( usbcsink3_t *ctx, usbcsink3_pwr_sel_t power );
usbcsink3_get_vbus
USB-C Sink 3 get VBUS function.
err_t usbcsink3_get_vbus ( usbcsink3_t *ctx, float *vbus );
This example demonstrates the use of USB-C Sink 3 Click board™ by setting DC power requests and control for Type-C connector-equipped devices (TCD).
The demo application is composed of two sections :
Initializes SPI, I2C and ADC modules and log UART. After driver initialization the app set default settings: Voltage Selection: 5 [V] and Power: 15.0 [W].
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
usbcsink3_cfg_t usbcsink3_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
usbcsink3_cfg_setup( &usbcsink3_cfg );
USBCSINK3_MAP_MIKROBUS( usbcsink3_cfg, MIKROBUS_1 );
err_t init_flag = usbcsink3_init( &usbcsink3, &usbcsink3_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
Delay_ms ( 100 );
if ( USBCSINK3_ERROR == usbcsink3_default_cfg ( &usbcsink3 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
log_printf( &logger, " ------------------------\r\n" );
Delay_ms ( 1000 );
}
In this example, the app configures Power Data Objects (PDO) highest priority profile and requests power from a standard USB PD source adapter. It interprets power input requirements (voltage/current and maximum power) from the TCD. The example uses two configurations:
- Voltage 5 [V] and Power 15.0 [W]
- Voltage 9 [V] and Power 18.0 [W] Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
static float voltage = 0.0;
if ( ( USBCSINK3_OK == usbcsink3_set_voltage( &usbcsink3, USBCSINK3_VTG_SEL_5V ) ) &&
( USBCSINK3_OK == usbcsink3_set_power( &usbcsink3, USBCSINK3_PWR_SEL_15W ) ) )
{
log_printf( &logger, " Output:\r\nVoltage: 5.0 [V]\r\nPower: 15.0 [W]\r\n" );
log_printf( &logger, " - - - - - - - - - - - -\r\n" );
Delay_ms ( 1000 );
usbcsink3_get_vbus ( &usbcsink3, &voltage );
log_printf( &logger, " VBUS : %.1f [V]\r\n", voltage );
log_printf( &logger, " ------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
if ( ( USBCSINK3_OK == usbcsink3_set_voltage( &usbcsink3, USBCSINK3_VTG_SEL_9V ) ) &&
( USBCSINK3_OK == usbcsink3_set_power( &usbcsink3, USBCSINK3_PWR_SEL_18W ) ) )
{
log_printf( &logger, " Output:\r\nVoltage: 9.0 [V]\r\nPower: 18.0 [W]\r\n" );
log_printf( &logger, " - - - - - - - - - - - -\r\n" );
Delay_ms ( 1000 );
usbcsink3_get_vbus ( &usbcsink3, &voltage );
log_printf( &logger, " VBUS : %.1f [V]\r\n", voltage );
log_printf( &logger, " ------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
}
FAULT LED flickering notified of the system status:
- Charging: Breathing light (2 sec dimming), 1 cycle is 4 sec.
- Fully charged: Continuously lit Charging current < 500mA.
- Mismatch: 1s flicker Voltage or power mismatch. Non-PD power source, 1 cycle is 2sec.
- Fault: 300ms flicker OVP, 1 cycle is 600ms.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.