TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141451 times)
  2. FAT32 Library (74295 times)
  3. Network Ethernet Library (58833 times)
  4. USB Device Library (48908 times)
  5. Network WiFi Library (44679 times)
  6. FT800 Library (44213 times)
  7. GSM click (30933 times)
  8. mikroSDK (29802 times)
  9. PID Library (27402 times)
  10. microSD click (27333 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAC 15 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 183 times

Not followed.

License: MIT license  

DAC 15 Click is a compact add-on board that provides a highly accurate digital-to-analog conversion on two channels. This board features the DAC80502, a dual 16-bit 1-LSB INL voltage-output DAC from Texas Instruments. The DAC operates at a wide power supply range and is a low-power device with as low as 1mA per channel at 5.5V. It also includes a 2.5V, 5-ppm/°C internal reference, giving a full-scale voltage buffered output ranges of 1.25V, 2.5V, and 5.5V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAC 15 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 15 Click" changes.

Do you want to report abuse regarding "DAC 15 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DAC 15 Click

DAC 15 Click is a compact add-on board that provides a highly accurate digital-to-analog conversion on two channels. This board features the DAC80502, a dual 16-bit 1-LSB INL voltage-output DAC from Texas Instruments. The DAC operates at a wide power supply range and is a low-power device with as low as 1mA per channel at 5.5V. It also includes a 2.5V, 5-ppm/°C internal reference, giving a full-scale voltage buffered output ranges of 1.25V, 2.5V, and 5.5V.

dac15_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jul 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the DAC 15 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DAC 15 Click driver.

Standard key functions :

  • dac15_cfg_setup Config Object Initialization function.

    void dac15_cfg_setup ( dac15_cfg_t *cfg );
  • dac15_init Initialization function.

    err_t dac15_init ( dac15_t *ctx, dac15_cfg_t *cfg );
  • dac15_default_cfg Click Default Configuration function.

    err_t dac15_default_cfg ( dac15_t *ctx );

Example key functions :

  • dac15_set_dac_data DAC 15 set DAC data function.

    err_t dac15_set_dac_data ( dac15_t *ctx, uint8_t dac_sel, uint16_t dac_data );
  • dac15_get_dac_data DAC 15 get DAC data function.

    err_t dac15_get_dac_data ( dac15_t *ctx, uint8_t dac_sel, uint16_t *dac_data );

Example Description

This example demonstrates the use of DAC 15 Click board™ by changing the output voltage level on the VOUTA and VOUTB.

The demo application is composed of two sections :

Application Init

Initialization of I2C or SPI module and log UART. After driver initialization, the app executes a default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    dac15_cfg_t dac15_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dac15_cfg_setup( &dac15_cfg );
    DAC15_MAP_MIKROBUS( dac15_cfg, MIKROBUS_1 );
    err_t init_flag = dac15_init( &dac15, &dac15_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( DAC15_ERROR == dac15_default_cfg ( &dac15 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, " -------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

The demo application changes the output voltage level on the VOUTA and VOUTB. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{   
    static uint16_t dac_data = 0;
    for ( uint16_t n_cnt = 0; n_cnt < 60000; n_cnt += 5000 )
    {
        dac_data = n_cnt;
        if ( DAC15_OK == dac15_set_dac_data( &dac15, DAC15_SET_DAC_A, dac_data ) )
        {
            log_printf( &logger, "VOUTA: %u -> %.2f V\r\n", 
                        dac_data, 
                        ( float ) dac_data * DAC15_VREF_3V3 / DAC15_MAX_DAC_DATA );
        }

        dac_data = DAC15_DAC_RES_16BIT - n_cnt;
        if ( DAC15_OK == dac15_set_dac_data( &dac15, DAC15_SET_DAC_B, dac_data ) )
        {
            log_printf( &logger, "VOUTB: %u -> %.2f V\r\n", 
                        dac_data, 
                        ( float ) dac_data * DAC15_VREF_3V3 / DAC15_MAX_DAC_DATA );
        }
        log_printf( &logger, " -------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DAC15

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Brushless 24 Click

0

Brushless 24 Click is a compact add-on board that controls brushless DC (BLDC) motors with any MCU. This board features the DRV10866, a 3- phase sensorless motor driver from Texas Instruments with integrated power MOSFETs with current drive capability up to 800mA peak. The DRV10866 implements a 150° commutation (sensorless BEMF control scheme) for a 3-phase motor alongside a synchronous rectification mode of operation that achieves increased efficiency for motor driver applications. Besides choosing the motor speed and a wide operating voltage range of up to 5V, it also has several built-in protection circuits, such as undervoltage, lock detection, voltage surge protection, and overtemperature.

[Learn More]

StereoAmp Click

0

This is an example which demonstrates the use of StereoAmp Click board - stereo amplifier and is ideal for battery operated devices or as a lab amplifier.

[Learn More]

Accel 30 Click

0

Accel 30 Click is a compact add-on board that contains an acceleration sensor. This board features the MC3635, an ultra-low power, low-noise, integrated digital output 3-axis accelerometer from MEMSIC. The MC3635 allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, ±8g, ±12g, or ±16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. It also supports high-resolution, low-power operating modes and interrupt feature for various events allowing maximum flexibility to meet multiple use case needs.

[Learn More]