TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139254 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ccRF Click

Rating:

1

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: 2.4 GHz Transceivers

Downloaded: 70 times

Not followed.

License: MIT license  

ccRF Click is a low-power 2.4 GHz transceiver designed for the 2400- 2483.5 MHz ISM and SRD frequency bands. It features CC2500 Low-Power 2.4 GHz RF transceiver as well as PCB trace antenna. The CC2500 is integrated with a highly configurable baseband modem that supports various modulation formats and has data rate up to 500 kBaud.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ccRF Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ccRF Click" changes.

Do you want to report abuse regarding "ccRF Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ccRF Click

ccRF Click is a low-power 2.4 GHz transceiver designed for the 2400- 2483.5 MHz ISM and SRD frequency bands. It features CC2500 Low-Power 2.4 GHz RF transceiver as well as PCB trace antenna. The CC2500 is integrated with a highly configurable baseband modem that supports various modulation formats and has data rate up to 500 kBaud.

ccrf_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jun 2020.
  • Type : SPI type

Software Support

We provide a library for the ccRf Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ccRf Click driver.

Standard key functions :

  • ccrf_cfg_setup Config Object Initialization function.

    void ccrf_cfg_setup ( ccrf_cfg_t *cfg ); 
  • ccrf_init Initialization function.

    err_t ccrf_init ( ccrf_t *ctx, ccrf_cfg_t *cfg );
  • ccrf_default_cfg Click Default Configuration function.

    void ccrf_default_cfg ( ccrf_t *ctx );

Example key functions :

  • ccrf_transmit_packet Function transmit a packet with packet length up to 63 bytes to the targeted 8-bit register address.

    void ccrf_transmit_packet ( ccrf_t *ctx, uint8_t *tx_buffer, uint8_t n_bytes );
  • ccrf_receive_packet Function receive a packet of variable packet length.

    uint8_t ccrf_receive_packet ( ccrf_t *ctx, uint8_t *rx_buffer, uint8_t *length_buff );
  • ccrf_get_start Function for getting state of GD0 pin function.

    uint8_t ccrf_get_start( ctx );

Examples Description

This example demonstrates the use of an ccRF Click board by showing the communication between the two Click boards configured as a receiver and transmitter.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, performs the Click default configuration and displays the selected application mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ccrf_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ccrf_cfg_setup( &cfg );
    CCRF_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ccrf_init( &ccrf, &cfg );

    ccrf_default_cfg( &ccrf );

#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger, " Application Mode: Transmitter\r\n" );
#else
    log_printf( &logger, " Application Mode: Receiver\r\n" );
#endif
    log_info( &logger, " Application Task " );
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
    ccrf_transmit_packet( &ccrf, DEMO_TEXT_MESSAGE, strlen( DEMO_TEXT_MESSAGE ) );
    log_printf( &logger, " The message \"%s\" has been sent!\r\n", ( char * ) DEMO_TEXT_MESSAGE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#else
    uint8_t data_buf[ 64 ] = { 0 };
    uint8_t data_len = sizeof( data_buf );
    if ( CCRF_CRC_OK == ccrf_receive_packet( &ccrf, data_buf, &data_len ) )
    {
        log_printf( &logger, " A new message has received: \"" );
        for ( uint16_t cnt = 0; cnt < data_len; cnt++ )
        {
            log_printf( &logger, "%c", data_buf[ cnt ] );
        }
        log_printf( &logger, "\"\r\n" );
    }
#endif
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ccRf

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RGB Driver Click

0

RGB Driver Click is an RGB LED driver, capable of driving RGB LED stripes, LED fixtures and other RGB LED applications that demand an increased amount of current and voltage.

[Learn More]

OBDII Click

0

OBDII Click offers a unique opportunity to tap into the car diagnostic systems. It features the STN1110 Multiprotocol OBD to UART Interface, developed by the ScanTool technologies. This Click can be used for the communication with the Electronic Control Unit (ECU) of a vehicle, via several different OBD II diagnostic protocols such as CAN, K LINE, L LINE and J1850. The STN1110 IC is used to process requests sent by the MCU via the UART interface and return back the responses from the ECU network nodes.

[Learn More]

6DOF IMU 14 Click

0

6DOF IMU 14 Click is a compact add-on board that contains a 6-axis MEMS motion tracking device combining a 3-axis gyroscope and a 3-axis accelerometer. This board features the ICM-42688-P, high precision 6-axis MEMS motion tracking device, from TDK InvenSense.

[Learn More]