TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141249 times)
  2. FAT32 Library (74083 times)
  3. Network Ethernet Library (58709 times)
  4. USB Device Library (48814 times)
  5. Network WiFi Library (44523 times)
  6. FT800 Library (44072 times)
  7. GSM click (30803 times)
  8. mikroSDK (29648 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RTC Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 169 times

Not followed.

License: MIT license  

RTC Click is an accessory board in mikroBus™ form factor. It features the PCF8583 serial real-time clock (RTC)

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RTC Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RTC Click" changes.

Do you want to report abuse regarding "RTC Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


RTC Click

RTC Click is an accessory board in mikroBus™ form factor. It features the PCF8583 serial real-time clock (RTC).

rtc_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Rtc Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rtc Click driver.

Standard key functions :

  • rtc_c_cfg_setup Config Object Initialization function.

    void rtc_c_cfg_setup ( rtc_c_cfg_t *cfg ); 
  • rtc_c_init Initialization function.

    err_t rtc_c_init ( rtc_c_t *ctx, rtc_c_cfg_t *cfg );

Example key functions :

  • rtc_c_set_time Function sets time: hours, minutes and seconds data to the target register address of PCF8583 chip on RTC Click.

    void rtc_c_set_time ( rtc_c_t *ctx );
  • rtc_c_get_time Function gets time: hours, minutes and seconds data from the target register address of PCF8583 chip on RTC Click.

    void rtc_c_get_time ( rtc_c_t *ctx );
  • rtc_c_enable_disable_counting Function that enables or disables counting on RTC Click.

    void rtc_c_enable_disable_counting ( rtc_c_t *ctx, uint8_t en_dis );

Example Description

This application enables setup and measurement of time with RTC Click.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, set start time, enable counting and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    rtc_c_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    rtc_c_cfg_setup( &cfg );
    RTC_C_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rtc_c_init( &rtc_c, &cfg );

    log_printf( &logger, "------------------\r\n" );
    log_printf( &logger, "     RTC Click    \r\n" );
    log_printf( &logger, "------------------\r\n" );

    // Set Time: 23h, 59 min, 50 sec and 10 ms
    rtc_c.time.time_hours = 23;
    rtc_c.time.time_minutes = 59;
    rtc_c.time.time_seconds = 50;
    rtc_c.time.time_hun_sec = 10;

    rtc_c_set_time( &rtc_c );
    Delay_100ms( );

    // Start counting
    rtc_c_enable_disable_counting( &rtc_c, 1 );
    Delay_100ms( );

    log_info( &logger, " Application Task " );
}

Application Task

This is an example which demonstrates the use of RTC Click board. RTC Click communicates with register via I2C by write to register and read from register. This example show time when the value of time_seconds is changed. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on usb uart changes for every 1 sec.


void application_task ( void )
{
    static uint8_t time_seconds_new = 0xFF;

    rtc_c_get_time( &rtc_c );

    if ( time_seconds_new != rtc_c.time.time_seconds )
    {
        log_printf( &logger, " Time : %.2u:%.2u:%.2u\r\n", 
                    ( uint16_t ) rtc_c.time.time_hours, 
                    ( uint16_t ) rtc_c.time.time_minutes, 
                    ( uint16_t ) rtc_c.time.time_seconds );

        log_printf( &logger, "------------------\r\n" );

        time_seconds_new = rtc_c.time.time_seconds;
    }

    Delay_ms ( 500 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rtc

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LED Driver 12 Click

0

LED Driver 12 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the PCA9532, a 16-bit I2C-configurable I/O expander optimized for dimming LEDs in 256 discrete Red/Green/Blue (RGB) steps from NXP Semiconductors. The PCA9532 offers high efficiency, supporting up to 16 LED channels and delivering a maximum of up to 25mA of LED current per channel. It contains an internal oscillator with two user-programmable blink rates and duty cycles coupled to the output PWM. Any bits not used for controlling the LEDs can be used for GPIO expansion, which provides a simple solution when additional I/O is needed for some sensors, push-buttons, or alarm monitoring. This Click board™ is suitable for color mixing and backlight application for amusement products, LED status signalization, home automation projects, and many more.

[Learn More]

Buck &amp; Boost click

5

Buck &amp;amp; Boost Click is a compact add-on board that contains a configurable power management device. This board features the MIC7401, a highly-integrated power-management IC featuring five synchronous buck regulators, one boost regulator, and a high-speed I2C interface with an internal EEPROM memory from Microchip.

[Learn More]

DMA Library

6

DMA is a powerful module that can autonomosly transfer data from memory to memory, memory to peripheral and peripheral to memory thus freeing up processor to do other tasks. This library provides routines for working with DMA module. A special thank you goes out to our valued associate Milos Markovic who helped in creating this package.

[Learn More]