We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.16
mikroSDK Library: 2.0.0.0
Category: 2.4 GHz Transceivers
Downloaded: 196 times
Not followed.
License: MIT license
Wirepas Click is a compact add-on board that allows you to implement the Wirepas Mesh wireless connectivity stack to your application. This board features the WIRL-PRO2 Thetis-I (2.1.0.1121010), a radio module with Wirepas Mesh Protocol from Würth Elektronik. It supports creating a Wirepas routing mesh protocol and is optimized for ultra-low energy consumption. The large scalability is ideal for extensive IoT networks and can work as a host-controlled device.
Do you want to subscribe in order to receive notifications regarding "Wirepas Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Wirepas Click" changes.
Do you want to report abuse regarding "Wirepas Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5418_wirepas_click.zip [545.46KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for dsPIC XC16 |
|
Wirepas Click is a compact add-on board that allows you to implement the Wirepas Mesh wireless connectivity stack to your application. This board features the WIRL-PRO2 Thetis-I (2611011021010), a radio module with Wirepas Mesh Protocol from Würth Elektronik. It supports creating a Wirepas routing mesh protocol and is optimized for ultra-low energy consumption. The large scalability is ideal for extensive IoT networks and can work as a host-controlled device.
We provide a library for the Wirepas Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Wirepas Click driver.
wirepas_cfg_setup
Config Object Initialization function.
void wirepas_cfg_setup ( wirepas_cfg_t *cfg );
wirepas_init
Initialization function.
err_t wirepas_init ( wirepas_t *ctx, wirepas_cfg_t *cfg );
wirepas_default_cfg
Click Default Configuration function.
void wirepas_default_cfg ( wirepas_t *ctx );
wirepas_send_command
Wirepas send command function.
err_t wirepas_send_command ( wirepas_t *ctx, uint8_t primitive_id, uint8_t payload_length, uint8_t *payload );
wirepas_write_csap_attribute
Wirepas write CSAP attribute function.
err_t wirepas_write_csap_attribute ( wirepas_t *ctx, uint16_t attribute_id, uint8_t attribute_len, uint8_t *attribute_val );
wirepas_send_data
Wirepas send data function.
err_t wirepas_send_data ( wirepas_t *ctx, wirepas_sink_data sink_data, uint8_t tx_op, uint8_t apdu_length, uint8_t *apdu );
This example demonstrates the use of Wirepas Click board by processing the incoming data and displaying them on the USB UART in sink mode, and sending data to the sinks in router mode.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration, setting device mode, node, net and channel addresses, and starting stack.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
wirepas_cfg_t wirepas_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
wirepas_cfg_setup( &wirepas_cfg );
WIREPAS_MAP_MIKROBUS( wirepas_cfg, MIKROBUS_1 );
if ( UART_ERROR == wirepas_init( &wirepas, &wirepas_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
wirepas_default_cfg ( &wirepas );
wirepas.tx_frame_id = 0;
do
{
log_printf( &logger, " Wirepas stack stop request:" );
wirepas_send_command( &wirepas, WIREPAS_MSAP_STACK_STOP_REQUEST, 0, NULL );
}
while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_MSAP_STACK_STOP_CONFIRM ) );
Delay_ms ( 1000 );
do
{
log_printf( &logger, " Wirepas factory reset request:" );
wirepas_send_command( &wirepas, WIREPAS_CSAP_FACTORY_RESET_REQUEST,
strlen( WIREPAS_FACTORY_RESET_CODE ), WIREPAS_FACTORY_RESET_CODE );
}
while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_FACTORY_RESET_CONFIRM ) );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
do
{
log_printf( &logger, " Set node address:" );
wirepas_set_node_address( &wirepas, NODE_ADDRESS );
}
while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
Delay_ms ( 1000 );
do
{
log_printf( &logger, " Set net address:" );
wirepas_set_net_address( &wirepas, NET_ADDRESS );
}
while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
Delay_ms ( 1000 );
uint8_t channel_net = CHANNEL_ADDRESS;
do
{
log_printf( &logger, " Set channel address:" );
wirepas_write_csap_attribute( &wirepas, WIREPAS_CSAP_ATTRIBUTE_NETWORK_CHANNEL, 1, &channel_net );
}
while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
Delay_ms ( 1000 );
uint8_t role;
#if ( ROUTER_NODE_ADDRESS == NODE_ADDRESS )
role = WIREPAS_ROUTER_NODE_MODE;
#else
role = WIREPAS_SINK_NODE_MODE;
#endif
do
{
log_printf( &logger, " Set role:" );
wirepas_write_csap_attribute( &wirepas, WIREPAS_CSAP_ATTRIBUTE_NODE_ROLE, 1, &role );
}
while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
Delay_1sec( );
do
{
log_printf( &logger, " Wirepas Stack start request:" );
wirepas_send_command( &wirepas, WIREPAS_MSAP_STACK_START_REQUEST, 1, &stack_auto_start );
}
while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_MSAP_STACK_START_CONFIRM ) );
Delay_1sec( );
#if ( ROUTER_NODE_ADDRESS == NODE_ADDRESS )
sink_1.pduid = 0x00;
sink_1.source_endpoint = 0x01;
sink_1.destination_addr = SINK_1_NODE_ADDRESS;
sink_1.destination_endpoint = 0x01;
#if defined MULTI_SINK_MODE
sink_2.pduid = 0x00;
sink_2.source_endpoint = 0x01;
sink_2.destination_addr = SINK_2_NODE_ADDRESS;
sink_2.destination_endpoint = 0x01;
#endif
#endif
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
}
Router mode - Sending data to the sinks at the same network. Sink mode - Reads and processes all incoming data and displays them on the USB UART.
void application_task ( void )
{
wirepas_poll_indication ( &wirepas );
#if ( ROUTER_NODE_ADDRESS == NODE_ADDRESS )
if ( wirepas_get_din_state ( &wirepas ) && ( pdu_capacity > 0 ) )
{
log_printf( &logger, " Sending data to the first Sink node: \n" );
wirepas_send_data ( &wirepas, sink_1, 0x01, strlen( TX_DATA ), TX_DATA );
wirepas_wait_response ( &wirepas, WIREPAS_DSAP_DATA_TX_CONFIRM );
Delay_ms ( 1000 );
#if defined MULTI_SINK_MODE
log_printf( &logger, " Sending data to the second Sink node: \n" );
wirepas_send_data ( &wirepas, sink_2, 0x01, strlen( TX_DATA ), TX_DATA );
wirepas_wait_response ( &wirepas, WIREPAS_DSAP_DATA_TX_CONFIRM );
Delay_ms ( 1000 );
#endif
}
#endif
}
For the best experience use two clicks in sink mode and one in router.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.