TOP Contributors

  1. MIKROE (2657 codes)
  2. Alcides Ramos (354 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136901 times)
  2. FAT32 Library (70034 times)
  3. Network Ethernet Library (56005 times)
  4. USB Device Library (46308 times)
  5. Network WiFi Library (41934 times)
  6. FT800 Library (41232 times)
  7. GSM click (29022 times)
  8. PID Library (26434 times)
  9. mikroSDK (26401 times)
  10. microSD click (25387 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Wirepas click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: 2.4 GHz Transceivers

Downloaded: 60 times

Not followed.

License: MIT license  

Wirepas Click is a compact add-on board that allows you to implement the Wirepas Mesh wireless connectivity stack to your application. This board features the WIRL-PRO2 Thetis-I (2.1.0.1121010), a radio module with Wirepas Mesh Protocol from Würth Elektronik. It supports creating a Wirepas routing mesh protocol and is optimized for ultra-low energy consumption. The large scalability is ideal for extensive IoT networks and can work as a host-controlled device.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Wirepas click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Wirepas click" changes.

Do you want to report abuse regarding "Wirepas click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Wirepas click

Wirepas Click is a compact add-on board that allows you to implement the Wirepas Mesh wireless connectivity stack to your application. This board features the WIRL-PRO2 Thetis-I (2611011021010), a radio module with Wirepas Mesh Protocol from Würth Elektronik. It supports creating a Wirepas routing mesh protocol and is optimized for ultra-low energy consumption. The large scalability is ideal for extensive IoT networks and can work as a host-controlled device.

wirepas_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : UART type

Software Support

We provide a library for the Wirepas Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Wirepas Click driver.

Standard key functions :

  • wirepas_cfg_setup Config Object Initialization function.

    void wirepas_cfg_setup ( wirepas_cfg_t *cfg );
  • wirepas_init Initialization function.

    err_t wirepas_init ( wirepas_t *ctx, wirepas_cfg_t *cfg );
  • wirepas_default_cfg Click Default Configuration function.

    void wirepas_default_cfg ( wirepas_t *ctx );

Example key functions :

  • wirepas_send_command Wirepas send command function.

    err_t wirepas_send_command ( wirepas_t *ctx, uint8_t primitive_id, uint8_t payload_length, uint8_t *payload );
  • wirepas_write_csap_attribute Wirepas write CSAP attribute function.

    err_t wirepas_write_csap_attribute ( wirepas_t *ctx, uint16_t attribute_id, uint8_t attribute_len, uint8_t *attribute_val );
  • wirepas_send_data Wirepas send data function.

    err_t wirepas_send_data ( wirepas_t *ctx, wirepas_sink_data sink_data, uint8_t tx_op, uint8_t apdu_length, uint8_t *apdu );

Example Description

This example demonstrates the use of Wirepas click board by processing the incoming data and displaying them on the USB UART in sink mode, and sending data to the sinks in router mode.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the click default configuration, setting device mode, node, net and channel addresses, and starting stack.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    wirepas_cfg_t wirepas_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    wirepas_cfg_setup( &wirepas_cfg );
    WIREPAS_MAP_MIKROBUS( wirepas_cfg, MIKROBUS_1 );
    if ( UART_ERROR == wirepas_init( &wirepas, &wirepas_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    wirepas_default_cfg ( &wirepas );

    wirepas.tx_frame_id = 0;
    do
    {
        log_printf( &logger, " Wirepas stack stop request:" );
        wirepas_send_command( &wirepas, WIREPAS_MSAP_STACK_STOP_REQUEST, 0, NULL );
    }
    while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_MSAP_STACK_STOP_CONFIRM ) );
    Delay_ms ( 1000 );

    do
    {
        log_printf( &logger, " Wirepas factory reset request:" );
        wirepas_send_command( &wirepas, WIREPAS_CSAP_FACTORY_RESET_REQUEST,
                              strlen( WIREPAS_FACTORY_RESET_CODE ), WIREPAS_FACTORY_RESET_CODE );
    }
    while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_FACTORY_RESET_CONFIRM ) );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    do
    {
        log_printf( &logger, " Set node address:" );
        wirepas_set_node_address( &wirepas, NODE_ADDRESS );
    }
    while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
    Delay_ms ( 1000 );

    do
    {
        log_printf( &logger, " Set net address:" );
        wirepas_set_net_address( &wirepas, NET_ADDRESS );
    }
    while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
    Delay_ms ( 1000 );

    uint8_t channel_net = CHANNEL_ADDRESS;
    do
    {
        log_printf( &logger, " Set channel address:" );
        wirepas_write_csap_attribute( &wirepas, WIREPAS_CSAP_ATTRIBUTE_NETWORK_CHANNEL, 1, &channel_net );
    }
    while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
    Delay_ms ( 1000 );


    uint8_t role;
#if ( ROUTER_NODE_ADDRESS == NODE_ADDRESS )
    role = WIREPAS_ROUTER_NODE_MODE;
#else
    role = WIREPAS_SINK_NODE_MODE;
#endif
    do
    {
        log_printf( &logger, " Set role:" );
        wirepas_write_csap_attribute( &wirepas, WIREPAS_CSAP_ATTRIBUTE_NODE_ROLE, 1, &role );
    }
    while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_CSAP_ATTRIBUTE_WRITE_CONFIRM ) );
    Delay_1sec( );

    do
    {
        log_printf( &logger, " Wirepas Stack start request:" ); 
        wirepas_send_command( &wirepas, WIREPAS_MSAP_STACK_START_REQUEST, 1, &stack_auto_start );
    }
    while ( WIREPAS_OK != wirepas_wait_response ( &wirepas, WIREPAS_MSAP_STACK_START_CONFIRM ) );
    Delay_1sec( );

#if ( ROUTER_NODE_ADDRESS == NODE_ADDRESS )

    sink_1.pduid = 0x00;
    sink_1.source_endpoint = 0x01;
    sink_1.destination_addr = SINK_1_NODE_ADDRESS;
    sink_1.destination_endpoint = 0x01;
    #if defined MULTI_SINK_MODE
        sink_2.pduid = 0x00;
        sink_2.source_endpoint = 0x01;
        sink_2.destination_addr = SINK_2_NODE_ADDRESS;
        sink_2.destination_endpoint = 0x01;
    #endif
#endif
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
}

Application Task

Router mode - Sending data to the sinks at the same network. Sink mode - Reads and processes all incoming data and displays them on the USB UART.

void application_task ( void ) 
{
    wirepas_poll_indication ( &wirepas );
#if ( ROUTER_NODE_ADDRESS == NODE_ADDRESS )
    if ( wirepas_get_din_state ( &wirepas ) && ( pdu_capacity > 0 ) )
    {
        log_printf( &logger, " Sending data to the first Sink node: \n" );
        wirepas_send_data ( &wirepas,  sink_1, 0x01, strlen( TX_DATA ), TX_DATA );
        wirepas_wait_response ( &wirepas, WIREPAS_DSAP_DATA_TX_CONFIRM );
        Delay_ms ( 1000 );

        #if defined MULTI_SINK_MODE
            log_printf( &logger, " Sending data to the second Sink node: \n" );
            wirepas_send_data ( &wirepas,  sink_2, 0x01, strlen( TX_DATA ), TX_DATA );
            wirepas_wait_response ( &wirepas, WIREPAS_DSAP_DATA_TX_CONFIRM );
            Delay_ms ( 1000 );
        #endif
    }
#endif
}

Note

For the best experience use two clicks in sink mode and one in router.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Wirepas

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Heart rate 3 click

0

Heart rate 3 click is a mikroBUS add-on board whose functionality is determined by two components: an OSRAM’s SFH7050 pulse oximetry and heart rate monitoring module, and a TI AFE4404 (analong-front-end) IC specialized for bio-sensing.

[Learn More]

Audio Xover click

0

Audio Xover Click is an analog active crossover solution for two-way loudspeakers. The primary purpose of the crossover circuit in a loudspeaker is to split an incoming audio signal into frequency bands that are passed to the speaker or “driver” best suited.

[Learn More]

16x9 G click

5

16x9 G click contains a green LED matrix and the IS31FL3731 audio modulated matrix LED driver. The dimension of the LED matrix is 16x9. Each LED can be controlled individually – both for on/off control and light intensity.

[Learn More]