TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141836 times)
  2. FAT32 Library (74959 times)
  3. Network Ethernet Library (59321 times)
  4. USB Device Library (49312 times)
  5. Network WiFi Library (45109 times)
  6. FT800 Library (44676 times)
  7. GSM click (31289 times)
  8. mikroSDK (30236 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DIGI POT 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Digital potentiometer

Downloaded: 214 times

Not followed.

License: MIT license  

DIGI POT 14 Click is a compact add-on board that contains a digitally controlled potentiometer. This board features the TPL0102, a dual-channel digital potentiometer with non-volatile memory from Texas Instruments. It is a 100K resistance end-to-end potentiometer with a 256-position resolution, where the wiper position can be stored in EEPROM. It can operate from both 3.3V and 5V power supplies and provides a typical 92ppm/ºC end-to-end nominal resistance temperature coefficient and only 4ppm/ºC ratiometric.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DIGI POT 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DIGI POT 14 Click" changes.

Do you want to report abuse regarding "DIGI POT 14 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DIGI POT 14 Click

DIGI POT 14 Click is a compact add-on board that contains a digitally controlled potentiometer. This board features the TPL0102, a dual-channel digital potentiometer with non-volatile memory from Texas Instruments. It is a 100K resistance end-to-end potentiometer with a 256-position resolution, where the wiper position can be stored in EEPROM. It can operate from both 3.3V and 5V power supplies and provides a typical 92ppm/ºC end-to-end nominal resistance temperature coefficient and only 4ppm/ºC ratiometric.

digipot14_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2023.
  • Type : I2C type

Software Support

We provide a library for the DIGI POT 14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DIGI POT 14 Click driver.

Standard key functions :

  • digipot14_cfg_setup Config Object Initialization function.

    void digipot14_cfg_setup ( digipot14_cfg_t *cfg );
  • digipot14_init Initialization function.

    err_t digipot14_init ( digipot14_t *ctx, digipot14_cfg_t *cfg );
  • digipot14_default_cfg Click Default Configuration function.

    err_t digipot14_default_cfg ( digipot14_t *ctx );

Example key functions :

  • digipot14_reg_write DIGI POT 14 register write function.

    err_t digipot14_reg_write ( digipot14_t *ctx, uint8_t reg, uint8_t data_in );
  • digipot14_set_pot_a_wiper DIGI POT 14 set the wiper position of potentiometer A function.

    err_t digipot14_set_pot_a_wiper ( digipot14_t *ctx, uint8_t wiper_pos );
  • digipot14_set_pot_b_wiper DIGI POT 14 set the wiper position of potentiometer B function.

    err_t digipot14_set_pot_b_wiper ( digipot14_t *ctx, uint8_t wiper_pos );

Example Description

This library contains API for DIGI POT 14 Click driver. The demo application uses a digital potentiometer to change the resistance values.

The demo application is composed of two sections :

Application Init

The initialization of I2C module, log UART, and additional pins. After the driver init, the app executes a default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    digipot14_cfg_t digipot14_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    digipot14_cfg_setup( &digipot14_cfg );
    DIGIPOT14_MAP_MIKROBUS( digipot14_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == digipot14_init( &digipot14, &digipot14_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( DIGIPOT14_ERROR == digipot14_default_cfg ( &digipot14 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the DIGI POT 14 Click board™. The demo application iterates through the entire wiper range. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    for ( uint8_t wiper_val = DIGIPOT14_MIN_POSITION; wiper_val <= DIGIPOT14_MAX_POSITION; wiper_val++ )
    {

        digipot14_set_pot_a_wiper( &digipot14, wiper_val );
        digipot14_set_pot_b_wiper( &digipot14, wiper_val );
        log_printf( &logger, " Resistance = %.3f KOhm \r\n", 
                    ( DIGIPOT14_MAX_RESISTANCE_KOHM * ( wiper_val / DIGIPOT14_MAX_POSITION_NUM ) ) );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DIGIPOT14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

XBEE 3 Click

0

Xbee 3 Click is a compact add-on board suitable for mission-critical wireless applications. This board features the XB8X-DMUS-001, a low-power CE/RED certified Digi Xbee® RF module delivering superior performance and interference immunity from Digi International. The module can run either a proprietary DigiMesh® or point-to-multipoint networking protocol utilizing a low-power Silicon Labs MCU and an ADF7023 transceiver, along with an integrated SAW filter that offers industry-leading interference blocking. Operating between 863MHz and 870MHz (868MHz), it allows use in several regions, including approved European countries.

[Learn More]

MOTION Click

0

MOTION Click is a motion detector sensitive only to live bodies. It carries PIR500B, a pyroelectric sensor. The Click is designed to run on 3.3V power supply only.

[Learn More]

Hall Current 8 25A Click

0

Hall Current 8 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the TLI4971-A025T5, a high-precision coreless current sensor for industrial/consumer applications from Infineon Technologies. The TLI4971-A025T5 has an analog interface and two fast overcurrent detection outputs, which support the protection of the power circuitry. Galvanic isolation is also provided according to the magnetic sensing principle. Infineon's monolithic Hall technology enables accurate and highly linear measurement of currents with a full scale up to 25A. This Click board™ is suitable for AC/DC current measurement applications: electrical drives, general-purpose inverters, chargers, current monitoring, overload, over-current detection, and many more.

[Learn More]