TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140166 times)
  2. FAT32 Library (72621 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47953 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28668 times)
  9. PID Library (27055 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DIGI POT 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Digital potentiometer

Downloaded: 131 times

Not followed.

License: MIT license  

DIGI POT 14 Click is a compact add-on board that contains a digitally controlled potentiometer. This board features the TPL0102, a dual-channel digital potentiometer with non-volatile memory from Texas Instruments. It is a 100K resistance end-to-end potentiometer with a 256-position resolution, where the wiper position can be stored in EEPROM. It can operate from both 3.3V and 5V power supplies and provides a typical 92ppm/ºC end-to-end nominal resistance temperature coefficient and only 4ppm/ºC ratiometric.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DIGI POT 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DIGI POT 14 Click" changes.

Do you want to report abuse regarding "DIGI POT 14 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DIGI POT 14 Click

DIGI POT 14 Click is a compact add-on board that contains a digitally controlled potentiometer. This board features the TPL0102, a dual-channel digital potentiometer with non-volatile memory from Texas Instruments. It is a 100K resistance end-to-end potentiometer with a 256-position resolution, where the wiper position can be stored in EEPROM. It can operate from both 3.3V and 5V power supplies and provides a typical 92ppm/ºC end-to-end nominal resistance temperature coefficient and only 4ppm/ºC ratiometric.

digipot14_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2023.
  • Type : I2C type

Software Support

We provide a library for the DIGI POT 14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DIGI POT 14 Click driver.

Standard key functions :

  • digipot14_cfg_setup Config Object Initialization function.

    void digipot14_cfg_setup ( digipot14_cfg_t *cfg );
  • digipot14_init Initialization function.

    err_t digipot14_init ( digipot14_t *ctx, digipot14_cfg_t *cfg );
  • digipot14_default_cfg Click Default Configuration function.

    err_t digipot14_default_cfg ( digipot14_t *ctx );

Example key functions :

  • digipot14_reg_write DIGI POT 14 register write function.

    err_t digipot14_reg_write ( digipot14_t *ctx, uint8_t reg, uint8_t data_in );
  • digipot14_set_pot_a_wiper DIGI POT 14 set the wiper position of potentiometer A function.

    err_t digipot14_set_pot_a_wiper ( digipot14_t *ctx, uint8_t wiper_pos );
  • digipot14_set_pot_b_wiper DIGI POT 14 set the wiper position of potentiometer B function.

    err_t digipot14_set_pot_b_wiper ( digipot14_t *ctx, uint8_t wiper_pos );

Example Description

This library contains API for DIGI POT 14 Click driver. The demo application uses a digital potentiometer to change the resistance values.

The demo application is composed of two sections :

Application Init

The initialization of I2C module, log UART, and additional pins. After the driver init, the app executes a default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    digipot14_cfg_t digipot14_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    digipot14_cfg_setup( &digipot14_cfg );
    DIGIPOT14_MAP_MIKROBUS( digipot14_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == digipot14_init( &digipot14, &digipot14_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( DIGIPOT14_ERROR == digipot14_default_cfg ( &digipot14 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the DIGI POT 14 Click board™. The demo application iterates through the entire wiper range. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    for ( uint8_t wiper_val = DIGIPOT14_MIN_POSITION; wiper_val <= DIGIPOT14_MAX_POSITION; wiper_val++ )
    {

        digipot14_set_pot_a_wiper( &digipot14, wiper_val );
        digipot14_set_pot_b_wiper( &digipot14, wiper_val );
        log_printf( &logger, " Resistance = %.3f KOhm \r\n", 
                    ( DIGIPOT14_MAX_RESISTANCE_KOHM * ( wiper_val / DIGIPOT14_MAX_POSITION_NUM ) ) );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DIGIPOT14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Step Down 6 Click

0

Step Down 6 Click is a compact add-on board that converts higher voltages into lower ones. This board features the MPM54304, a quad-output power module from Monolithic Power Systems (MPS). It is a quad-output, DC/DC step-down power module with up to 3A per output on channels 1 and 2 and up to 2A per channels 3 and 4, providing continuous current on all four channels.

[Learn More]

Button ALARM click

5

Button Alarm Click is a very interesting interactive gadget on a Click board. It is an integrated capacitive touch sensor display in the form of a button.

[Learn More]

Brushless 8 Click

0

Brushless 8 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TC78B042FTG, a sine-wave PWM drive three-phase full-wave brushless motor controller from Toshiba Semiconductor.

[Learn More]