TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142085 times)
  2. FAT32 Library (75316 times)
  3. Network Ethernet Library (59508 times)
  4. USB Device Library (49526 times)
  5. Network WiFi Library (45293 times)
  6. FT800 Library (44930 times)
  7. GSM click (31444 times)
  8. mikroSDK (30470 times)
  9. microSD click (27804 times)
  10. PID Library (27625 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Smart Buck 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 212 times

Not followed.

License: MIT license  

Smart Buck 2 Click is a compact add-on board that contains a high-frequency synchronous step-down DC-DC converter. This board features the TPS62363, a 3A processor supply with remote sense from Texas Instruments. The converter is optimized for battery-powered portable applications for a small solution size. It has an input range of 2.5V to 5.5V, which is common for battery technologies. The converter provides up to 3A peak load current operating at 2.5MHz typical switching frequency.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Smart Buck 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Smart Buck 2 Click" changes.

Do you want to report abuse regarding "Smart Buck 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Smart Buck 2 Click

Smart Buck 2 Click is a compact add-on board that contains a high-frequency synchronous step-down DC-DC converter. This board features the TPS62363, a 3A processor supply with remote sense from Texas Instruments. The converter is optimized for battery-powered portable applications for a small solution size. It has an input range of 2.5V to 5.5V, which is common for battery technologies. The converter provides up to 3A peak load current operating at 2.5MHz typical switching frequency.

smartbuck2_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Aug 2023.
  • Type : I2C type

Software Support

We provide a library for the Smart Buck 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Smart Buck 2 Click driver.

Standard key functions :

  • smartbuck2_cfg_setup Config Object Initialization function.

    void smartbuck2_cfg_setup ( smartbuck2_cfg_t *cfg );
  • smartbuck2_init Initialization function.

    err_t smartbuck2_init ( smartbuck2_t *ctx, smartbuck2_cfg_t *cfg );
  • smartbuck2_default_cfg Click Default Configuration function.

    err_t smartbuck2_default_cfg ( smartbuck2_t *ctx );

Example key functions :

  • smartbuck2_set_voltage Smart Buck 2 set voltage function.

    err_t smartbuck2_set_voltage ( smartbuck2_t *ctx, uint16_t vout_mv );
  • smartbuck2_get_voltage Smart Buck 2 get voltage function.

    err_t smartbuck2_get_voltage ( smartbuck2_t *ctx, uint16_t *vout_mv );

Example Description

This library contains API for the Smart Buck 2 Click board™. This driver provides functions for device configurations and for the sets and reads the output voltage.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization, the app executes a default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    smartbuck2_cfg_t smartbuck2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    smartbuck2_cfg_setup( &smartbuck2_cfg );
    SMARTBUCK2_MAP_MIKROBUS( smartbuck2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == smartbuck2_init( &smartbuck2, &smartbuck2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( SMARTBUCK2_ERROR == smartbuck2_default_cfg ( &smartbuck2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the Smart Buck 2 Click board™. The demo application changes the output voltage in steps of 100mv every 3 seconds and displays the output voltage value. Results are sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    if ( SMARTBUCK2_OK == smartbuck2_set_voltage( &smartbuck2, vout_mv ) )
    {
        Delay_ms ( 100 );
        if ( SMARTBUCK2_OK == smartbuck2_get_voltage( &smartbuck2, &vout_mv ) )
        {
            log_printf( &logger, " Output voltage: %u [mV]\r\n", vout_mv );
        }
    }
    vout_mv += DEMO_VOUT_STEP_100MV;
    if ( vout_mv > SMARTBUCK2_VOUT_MAX )
    {
        vout_mv = SMARTBUCK2_VOUT_MIN;
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SmartBuck2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

TempHum 3 Click

0

Temp&Hum 3 Click is a smart environmental temperature and humidity sensor Click board™, packed with features which allow easy and simple integration into any design that requires accurate and reliable humidity and temperature measurements

[Learn More]

Audio DAC Click

0

Audio DAC Click is a compact add-on board perfect for upgrading your audio equipment. This board features the PCM5142, a 32-bit 384kHz audio stereo DAC with the DIR9001 digital audio receiver from Texas Instruments. The DIR9001 can receive 24-bit/96kHz signals at the highest via S/PDIF optical cable and complies with various digital audio standards, like IEC60958-3, JEITA CPR-1205, AES3, and EBUtech3250. The DIR9001's output is then processed via a stereo audio DAC, the PCM5142, with the latest generation of TI's advanced segment-DAC architecture to achieve excellent dynamic performance, detailed heights, and an exceptionally good sound stage.

[Learn More]

Cap Touch 4 Click

0

Cap Touch 4 Click is a compact add-on board for wake-on-touch and activation applications. This board features the IQS211B, a single-channel capacitive controller from Azoteq, featuring ProxSense® technology for highly sensitive self-capacitance measurements. The board includes a defined circular touch-sensing area, signal conditioning for parasitic capacitance, and a low-power Sleep mode with wake-up functionality, ensuring efficient energy consumption. It communicates via the I2C interface with a fixed address of 0x47, operates at 3.3V logic, and features the new Click Snap for added flexibility.

[Learn More]