TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141699 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59219 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Charger 26 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 159 times

Not followed.

License: MIT license  

Charger 26 Click is a compact add-on board that provides a single-cell charging solution. This board features the MAX1811, a USB-powered Li+ charger from Analog Devices. The charger uses an internal FET to deliver the battery up to 500mA charging current. It has pre-conditioning that soft-starts a near-dead battery cell before charging.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Charger 26 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Charger 26 Click" changes.

Do you want to report abuse regarding "Charger 26 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Charger 26 Click

Charger 26 Click is a compact add-on board that provides a single-cell charging solution. This board features the MAX1811, a USB-powered Li+ charger from Analog Devices. The charger uses an internal FET to deliver the battery up to 500mA charging current. It has pre-conditioning that soft-starts a near-dead battery cell before charging.

charger26_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2023.
  • Type : GPIO type

Software Support

We provide a library for the Charger 26 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Charger 26 Click driver.

Standard key functions :

  • charger26_cfg_setup Config Object Initialization function.

    void charger26_cfg_setup ( charger26_cfg_t *cfg );
  • charger26_init Initialization function.

    err_t charger26_init ( charger26_t *ctx, charger26_cfg_t *cfg );
  • charger26_default_cfg Click Default Configuration function.

    void charger26_default_cfg ( charger26_t *ctx );

Example key functions :

  • charger26_set_vsel Charger 26 select charger voltage function.

    void charger26_set_vsel ( charger26_t *ctx, uint8_t vout_sel );
  • charger26_set_isel Charger 26 select charger current function.

    void charger26_set_isel ( charger26_t *ctx, uint8_t iout_sel );
  • charger26_get_chg_state Charger 26 chg pin reading function.

    uint8_t charger26_get_chg_state ( charger26_t *ctx );

Example Description

This example demonstrates the use of Charger 26 Click board by enabling the device and then reading and displaying the charger status.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables the device, sets the output voltage to 4.2 V and charging current to 100 mA.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    charger26_cfg_t charger26_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    charger26_cfg_setup( &charger26_cfg );
    CHARGER26_MAP_MIKROBUS( charger26_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == charger26_init( &charger26, &charger26_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    charger26_default_cfg ( &charger26 );
    Delay_ms ( 1000 );

    log_printf( &logger, " Connect input power and battery. \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, " Enableing output. \r\n" );
    charger26_enable_output ( &charger26, CHARGER26_ENABLE_OUTPUT );

    while ( CHARGER26_PIN_STATE_LOW != charger26_get_chg_state( &charger26 ) )
    {
        log_printf( &logger, " Check connection. \r\n" );
        Delay_ms ( 1000 );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Tracking charging status, as soon as charging stops, device output is disabled.

void application_task ( void ) 
{
    if ( CHARGER26_PIN_STATE_LOW == charger26_get_chg_state( &charger26 ) )
    {
        log_printf( &logger, " Battery is charging. \r\n" );
    }
    else
    {
        log_printf( &logger, " Battery isn't charging, disabling output. \r\n" );
        charger26_enable_output ( &charger26, CHARGER26_DISABLE_OUTPUT );
        for ( ; ; );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Charger26

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

ReRAM 2 Click

0

ReRAM 2 Click is a compact add-on board containing highly reliable resistive random-access memory. This board features the MB85AS8MT, an 8Mbit memory organized as 1,048,576 words of 8 bits from Fujitsu Semiconductor. The MB85AS8MT uses the resistance-variable memory process and silicon-gate CMOS process technologies to form nonvolatile memory cells. This SPI configurable ReRAM can withstand many write cycles (1x106 rewrite operations), has a data retention period greater than ten years, and can read and write to random addresses with very negligible delay. This Click board™ is ideal as a nonvolatile storage media or temporary RAM expansion for storing variables in any embedded application that requires rapid writes and unlimited endurance.

[Learn More]

AC Current click

6

AC Current click can measure alternating currents up to 30A and it features the MCP3201 ADC (analog to digital) converter and the MCP607 CMOS Op Amp, both from Microchip. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over an SPI interface, and the AN pin on the mikroBUS line.

[Learn More]

Grid-EYE 2 Click

0

Grid-EYE 2 Click is a compact add-on board designed for thermal imaging and motion detection applications. This board features the AMG883543, an infrared array sensor from Panasonic with a 90° viewing angle and an 8x8 pixel matrix that measures temperatures from 0°C to 80°C with a resolution of 0.25°C. The sensor can detect objects up to 5 meters away and outputs temperature data via a digital interface. The board also supports the Click Snap feature, allowing the main sensor area to be detached for flexible positioning.

[Learn More]